Midterm 2: Review Problems

Tuesday, October 25

1 Computations

1. If $\mathcal{B}=\left\{\left[\begin{array}{c}1 \\ -2\end{array}\right],\left[\begin{array}{c}-3 \\ 5\end{array}\right]\right\}$ and $\mathbf{x}=\left[\begin{array}{c}2 \\ -5\end{array}\right]$, find $[\mathbf{x}]_{\mathcal{B}}$.

ANSWER: $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{cc}1 & -3 \\ -2 & 5\end{array}\right]^{-1}\left[\begin{array}{c}2 \\ -5\end{array}\right]=\left[\begin{array}{l}5 \\ 1\end{array}\right]$
2. If $\mathcal{B}=\left\{1-t^{2}, t-t^{2}, 2-t+t^{2}\right\}$, find the coordinate vector of $p(t)=1+3 t-6 t^{2}$ relative to \mathcal{B}.

ANSWER: Under the basis $\left\{1, t, t^{2}\right\}$, we get the answer

$$
[p]_{\mathcal{B}}=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
1 \\
3 \\
-6
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & 1 \\
0 & 0 & 2
\end{array}\right]^{-1}\left[\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right]=\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right]
$$

3. If the null space of a 5×4 matrix A is 2 -dimensional, what is the dimension of the row space of A ? ANSWER: The Rank Theorem implies that the rank of A is $4-2$, or 2 . Thus the dimension of the row space is also 2 .
4. If A is a 7×5 matrix, what is the largest possible rank of A ?

ANSWER: The largest possible rank is 5 . One example of such a matrix is a 5 -by- 5 identiy matrix with two rows of zeros beneath it.
5. Let \mathcal{B} and \mathcal{C} be bases for a vector space V such that $\mathbf{b}_{1}=2 \mathbf{c}_{1}-\mathbf{c}_{2}+\mathbf{c}_{3}, \mathbf{b}_{2}=3 \mathbf{c}_{2}+\mathbf{c}_{3}$, and $\mathbf{b}_{3}=-3 \mathbf{c}_{1}+2 \mathbf{c}_{3}$. Find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}. If $\mathbf{x}=\mathbf{b}_{1}-2 \mathbf{b}_{2}+2 \mathbf{b}_{3}$, find $[\mathbf{x}]_{\mathcal{C}}$.
ANSWER:

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ccc}
2 & 0 & -3 \\
-1 & 3 & 0 \\
1 & 1 & 2
\end{array}\right] ;[\mathbf{x}]_{\mathcal{C}}=P[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{ccc}
2 & 0 & -3 \\
-1 & 3 & 0 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right]=\left[\begin{array}{c}
-4 \\
-7 \\
3
\end{array}\right] .
$$

6. If $A^{2}-A=I$, what can you conclude about the eigenvalues of A ?

ANSWER (updated): Suppose that v is an eigenvalue of A with eigenvalue λ. Then $\left(A^{2}-A-I\right) v=0$ since $A^{2}-A-I=0$, but we can also conclude that $\left(A^{2}-A-I\right) v=A^{2} v-A v-v=\lambda^{2} v-\lambda v-v=$ $\left(\lambda^{2}-\lambda-1\right) v$. Therefore, $\lambda^{2}-\lambda-1=0$, so the only possible eigenvalues of A are $\lambda=\frac{1 \pm \sqrt{5}}{2}$.
7. Diagonalize the matrix $\left[\begin{array}{ccc}4 & 0 & -1 \\ 0 & 4 & -1 \\ 1 & 0 & 2\end{array}\right]$ or show that it is not possible to do so.

ANSWER: First find the characteristic polynomial of A : $\operatorname{det}(A-\lambda I)=(4-\lambda)(\lambda-3)^{2}$, so A has eigenvalues 4 with multiplicity 1 and 3 with multiplicity 2 .
Then find the dimensions of the eigenspaces. We know that the eigenspace with $\lambda=4$ must have dimension 1 , so just check the case $\lambda=3$:

$$
A-3 I=\left[\begin{array}{lll}
1 & 0 & -1 \\
0 & 1 & -1 \\
1 & 0 & -1
\end{array}\right]
$$

Since the first and second columns of this matrix are linearly independent (as are the first and second rows), this matrix has rank at least 2 . The null space therefore is at most 1-dimensional, so the eigenspace only has dimension 1. The matrix is not diagonalizable.
8. Find the solution to $\min _{x}\|A \mathbf{x}-\mathbf{b}\|^{2}$, where

$$
A=\left[\begin{array}{lll}
1 & 3 & 5 \\
1 & 1 & 0 \\
1 & 1 & 2 \\
1 & 3 & 3
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
3 \\
5 \\
7 \\
-3
\end{array}\right]
$$

using both the normal equations and the QR factorization of A.
ANSWER: Using the normal equations gives that

$$
A^{T} A=\left[\begin{array}{ccc}
4 & 8 & 10 \\
8 & 20 & 26 \\
10 & 26 & 38
\end{array}\right], A^{T} \mathbf{b}=\left[\begin{array}{c}
12 \\
12 \\
20
\end{array}\right],\left(A^{T} A\right)^{-1} A^{T} b=\left[\begin{array}{c}
10 \\
-6 \\
2
\end{array}\right]
$$

Orthogonalizing the second and third columns against the first give the matrix

$$
\left[\begin{array}{ccc}
1 & 1 & 2.5 \\
1 & -1 & -2.5 \\
1 & -1 & -.5 \\
1 & 1 & .5
\end{array}\right]
$$

after which orthogonalizing the third column against the second and then normalizing all columns gives the matrix

$$
\frac{1}{2}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & -1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

Then taking $Q^{T} A$ gives the factor $R=\left[\begin{array}{lll}2 & 4 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 2\end{array}\right]$, and finding $R^{-1} Q^{T} \mathbf{b}$ gives the same solution as before.
9. If \langle,$\rangle is an inner product on \mathbb{P}_{2}$ defined by $\langle p, q\rangle=p(0) q(0)+2 p(1) q(1)+p(2) q(2)$, find an orthogonal basis for \mathbb{P}_{2} with respect to \langle,$\rangle .$
ANSWER: $\langle 1,1\rangle=4$ and $\langle 1, t\rangle=4$, so $\langle 1, t-1\rangle=0$.
As a slight shortcut, $t-1$ has odd symmetry around the point 1 and $(t-1)^{2}$ has even symmetry around the same point, so $\left\langle t-1,(t-1)^{2}\right\rangle=0$ since the inner product is symmetric with respect to 1 . But $\left\langle 1,(t-1)^{2}\right\rangle=2$, so subtract $1 / 2$ to get $\left\langle 1,(t-1)^{2}-1 / 2\right\rangle=0$.
The basis $\left\{1, t-1,(t-1)^{2}-1 / 2\right\rangle$ is therefore orthogonal with respect to this inner product.

2 True/False

For each statement, explain why it is true or give a counterexample.

1. If \mathbf{x} is in V and if \mathcal{B} contains n vectors, then $[\mathbf{x}]_{\mathcal{B}}$ is in \mathbb{R}^{n}. TRUE.
2. The vector spaces \mathbb{P}_{3} and \mathbb{R}^{3} are isomorphic. FALSE: \mathbb{P}_{3} is 4 -dimensional but \mathbb{R}^{3} is only 3-dimensional.
3. If H is a subspace of V then the dimension of H must be less than the dimension of V. FALSE: V is itself a subspace of V, so the dimensions can be equal. Aside from this one exception (assuming finite-dimensional spaces), the statement is true.
4. If B is any echelon form of A then the pivot columns of B form a basis for the column space of A. FALSE: the corresponding columns of A form a basis for the column space of A, but the column space of B is not in general the same as the column space of A.
5. The row space of A^{T} is the same as the column space of A. TRUE.
6. If A and B are similar and A is diagonalizable, then B is also diagonalizable. TRUE: If $A=P D P^{-1}$ then $B=Q A Q^{-1}=Q P D P^{-1} Q^{-1}=(Q P) D(Q P)^{-1}$.
7. If E is an elementary matrix then the eigenvalues of $E A$ are the same as the eigenvalues of A. FALSE, in general. For example, swapping the rows of the identity matrix will change its eigenvalues.
8. If an $n \times n$ matrix has n distinct eigenvalues then it has a basis of eigenvectors. TRUE, since eigenvectors corresponding to distinct eigenvalues are linearly independent.
9. If an $n \times n$ matrix has a basis of eigenvectors then it has n distinct eigenvalues. FALSE: for example, the identity matrix has 1 as its only eigenvalue but is diagonalizable (in fact, diagonal!)
10. If λ is an eigenvalue of A then it is also an eigenvalue of A^{2}. FALSE: λ^{2} will be an eigenvalue of A^{2}. The corresponding eigenvectors, however, will be the same.
11. If the columns of A are linearly independent then the equation $A \mathbf{x}=\mathbf{b}$ has exactly one least-squares solution. TRUE, since $A^{T} A$ will be invertible (or since the R factor in $A=Q R$ will be invertible).
12. The least-squares solution of $A \mathbf{x}=\mathbf{b}$ is the point in the row space of A closest to \mathbf{b}. FALSE: it's the closest point in the column space, not the row space.
13. If $\langle p(t), q(t)\rangle=p(0) q(1)+p(1) q(0)$, then \langle,$\rangle defines an inner product on \mathbb{P}_{1}$. FALSE, since it is not positive definite: $\langle t-1, t-1\rangle=0$ even though $t-1 \neq 0$.

3 Proofs

1. Show that if $C[a, b]$ is the set of all continuous functions on the interval $[a, b]$ then $C[a, b]$ is infinitedimensional.

ANSWER: The set of all polynomials on $[a, b]$ is infinite dimensional and a subspace of $C[a, b]$.
2. Show that if \mathbf{u} and \mathbf{v} are vectors then $\mathbf{u v}^{T}$ has rank 1 .

ANSWER: $\mathbf{u} \mathbf{v}^{T} \mathbf{x}=\mathbf{u}\left(\mathbf{v}^{T} \mathbf{x}\right)$, so the column space of $\mathbf{u v}^{T}$ is spanned by the single vector \mathbf{u}.
3. Show that the rank of a matrix product $A B$ is at most the minimum of $(\operatorname{rank}(\mathrm{A}), \operatorname{rank}(\mathrm{B}))$.

ANSWER: The null space of $A B$ contains the null space of B since if $B \mathbf{x}=\mathbf{0}$ then $A B \mathbf{x}=A \mathbf{0}=\mathbf{0}$. Since $A B$ and B have the same number of columns, the rank of $A B$ is therefore at most the rank of B.
Then use the same logic on $(A B)^{T}=B^{T} A^{T}$ to show that the rank of $(A B)^{T}$ is at most the rank of A^{T}, which implies that the rank of $A B$ is at most the rank of A.
4. Show that if A is diagonalizable then so is $A^{2}-3 A+2 I$.

ANSWER: If $A=P D P^{-1}$ then $A^{2}-3 A+2 I=\left(P D P^{-1}\right)^{2}-3 P D P^{-1}+2 P I P^{-1}=P\left(D^{2}-3 D+2 I\right) P^{-1}$.
5. If A and B are both diagonalizable and every eigenvector of A is an eigenvector of B (and vice versa), then $A B=B A$.
ANSWER: If A and B have all the same eigenvectors then they are simultaneously diagonalizable, so $A B=\left(P D_{A} P^{-1}\right)\left(P D_{B} P^{-1}\right)=P D_{A} D_{B} P^{-1}=P D_{B} D_{A} P^{-1}=\left(P D_{B} P^{-1}\right)\left(P D_{A} P^{-1}\right)$. This proof uses the fact that diagonal matrices commute.
6. Show that if A is similar to B and B is similar to C then A is similar to C.

ANSWER: If $A=Q B Q^{-1}$ and $B=P C P^{-1}$ then $A=Q\left(P C P^{-1}\right) Q^{-1}=(Q P) C(Q P)^{-1}$.
7. If $\langle p(t), q(t)\rangle=p(0) q(0)+3 p(1) q(1)-p(2) q(2)$, show that \langle,$\rangle does not define an inner product on \mathbb{P}_{2}$. ANSWER: It is not positive definite. Take the polynomial $t(t-1)$, which takes on the value 0 at 0 and 1 and 2 at 2 . Then $\langle t(t-1), t(t-1)\rangle=0+0-2^{2}=-4$, but $\langle p, p\rangle$ must always be non-negative for \langle,$\rangle to define an inner product.$

