Midterm 1: Review Problems

Tuesday, September 20

1 Computations

1. If $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 1 & 1 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, find all solutions to $A \mathbf{x}=\mathbf{b}$.
2. If $A=\left[\begin{array}{ccc}1 & -3 & -1 \\ 3 & -7 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, find all solutions to $A \mathbf{x}=\mathbf{b}$ in parametric vector form.
3. With the A given above, find all solutions to $A \mathbf{x}=\mathbf{0}$.
4. If $A=\left[\begin{array}{ll}2 & 4 \\ 1 & \alpha\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}\beta \\ 5\end{array}\right]$, for what values of α and β will the system $A \mathbf{x}=\mathbf{b}$ have infinitely many solutions?
5. If $B=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & h & 1 \\ 2 & 1 & h\end{array}\right]$, find all values of h for which B is singular.
6. Show that $\left[\begin{array}{c}1 \\ 11 \\ 17\end{array}\right]$ is in Span $\left\{\left[\begin{array}{c}1 \\ -3 \\ -5\end{array}\right]\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]\right\}$
7. Find the inverse of the matrix $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8\end{array}\right]$
8. Find the determinant of

$$
\left[\begin{array}{cccc}
1 & -1 & -1 & -1 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & -1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

9. If $A=\left[\begin{array}{ccccc}1 & 3 & -2 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 3 & 0\end{array}\right]$, find a subset of columns of A that form a basis for the column space of A.

2 True/False

For each statement, explain why it is true or give a counterexample.

1. If S is a set of linearly dependent vectors then each vector of S is a linear combination of the other vectors in S.
2. If $B=A^{-1}$ then $A B=I$ and $B A=I$.
3. If the columns of an $n \times n$ matrix A are linearly dependent then $\operatorname{det}(A)=0$.
4. If A is $m \times n$ and $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions then $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions for any $\mathbf{b} \in \mathbb{R}^{m}$.
5. If a set in \mathbb{R}^{n} is linearly dependent then the set contains more than n vectors.
6. The columns of any 4×5 matrix are linearly dependent.
7. If \mathbf{x} and \mathbf{y} are linearly independent but $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is linearly dependent, then \mathbf{z} is in $\operatorname{Span}\{\mathbf{x}, \mathbf{y}\}$.
8. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for \mathbb{R}^{3} then $\{3 \mathbf{u}, \mathbf{u}+2 \mathbf{v}+\mathbf{w}, \mathbf{w}\}$ is also a basis.
9. If A and B are invertible then $A+B$ and $A B$ are also invertible.
10. If A is invertible then $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$.

3 Proofs

1. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ be vectors in $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be vectors in $\operatorname{Span}\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right)$. Show that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ are in the span of $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$.
2. If the range space of an $n \times n$ matrix A is \mathbb{R}^{n} for $n>0$, show that A must be invertible.
3. Determine, with proof, whether the transformation $T(x, y)=(x-2 y, x+3,2 x-5 y)$ is linear.
4. Let S be the set of all real-valued functions f such that $f^{\prime}=f$. Determine whether S is a subspace.
5. Let W be the union of the first and third quadrants in the xy-plane, so $W=\{(x, y): x y \geq 0\}$. Determine whether W is a subspace.
6. Let A, B, C be matrices such that A and C are invertible and $A^{-1}=C^{-1} B$. Show that B is also invertible.
7. Prove that if S and T are subspaces of a vector space V then $S \cap T$ is also a subspace.
8. Let T be a linear transformation such that $T\left(\mathbf{v}_{1}\right)=\mathbf{u}_{1}$ and $T\left(\mathbf{v}_{2}\right)=\mathbf{u}_{2}$. If $\mathbf{w}=3 \mathbf{u}_{1}-2 \mathbf{u}_{2}$, show that there exists \mathbf{x} such that $T(\mathbf{x})=\mathbf{w}$.
9. Show that if the columns of an $n \times n$ matrix A are linearly independent then the columns of A^{2} span \mathbb{R}^{n}.
