Midterm 1: Review Problems Tuesday, September 20

1 Computations

- 1. If $A = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 1 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, find all solutions to $A\mathbf{x} = \mathbf{b}$. 2. If $A = \begin{bmatrix} 1 & -3 & -1 \\ 3 & -7 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, find all solutions to $A\mathbf{x} = \mathbf{b}$ in parametric vector form.
- 3. With the A given above, find all solutions to $A\mathbf{x} = \mathbf{0}$.
- 4. If $A = \begin{bmatrix} 2 & 4 \\ 1 & \alpha \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} \beta \\ 5 \end{bmatrix}$, for what values of α and β will the system $A\mathbf{x} = \mathbf{b}$ have infinitely many solutions?
- 5. If $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & h & 1 \\ 2 & 1 & h \end{bmatrix}$, find all values of h for which B is singular.
- 6. Show that $\begin{bmatrix} 1\\11\\17 \end{bmatrix}$ is in Span $\left\{ \begin{bmatrix} 1\\-3\\-5 \end{bmatrix} \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\}$
- 7. Find the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$
- 8. Find the determinant of

$$\begin{bmatrix} 1 & -1 & -1 & -1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

9. If $A = \begin{bmatrix} 1 & 3 & -2 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 3 & 0 \end{bmatrix}$, find a subset of columns of A that form a basis for the column space of A.

2 True/False

For each statement, explain why it is true or give a counterexample.

- 1. If S is a set of linearly dependent vectors then each vector of S is a linear combination of the other vectors in S.
- 2. If $B = A^{-1}$ then AB = I and BA = I.
- 3. If the columns of an $n \times n$ matrix A are linearly dependent then det(A) = 0.
- 4. If A is $m \times n$ and $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions then $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions for any $\mathbf{b} \in \mathbb{R}^m$.
- 5. If a set in \mathbb{R}^n is linearly dependent then the set contains more than n vectors.
- 6. The columns of any 4×5 matrix are linearly dependent.

- 7. If x and y are linearly independent but $\{x, y, z\}$ is linearly dependent, then z is in Span $\{x, y\}$.
- 8. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for \mathbb{R}^3 then $\{3\mathbf{u}, \mathbf{u} + 2\mathbf{v} + \mathbf{w}, \mathbf{w}\}$ is also a basis.
- 9. If A and B are invertible then A + B and AB are also invertible.
- 10. If A is invertible then $det(A^{-1}) = 1/det(A)$.

3 Proofs

- 1. Let $\mathbf{u}_1, \ldots, \mathbf{u}_m$ be vectors in Span $(\mathbf{v}_1, \ldots, \mathbf{v}_k)$ and let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be vectors in Span $(\mathbf{w}_1, \ldots, \mathbf{w}_n)$. Show that $\mathbf{u}_1, \ldots, \mathbf{u}_m$ are in the span of $\{\mathbf{w}_1, \ldots, \mathbf{w}_n\}$.
- 2. If the range space of an $n \times n$ matrix A is \mathbb{R}^n for n > 0, show that A must be invertible.
- 3. Determine, with proof, whether the transformation T(x,y) = (x-2y, x+3, 2x-5y) is linear.
- 4. Let S be the set of all real-valued functions f such that f' = f. Determine whether S is a subspace.
- 5. Let W be the union of the first and third quadrants in the xy-plane, so $W = \{(x, y) : xy \ge 0\}$. Determine whether W is a subspace.
- 6. Let A, B, C be matrices such that A and C are invertible and $A^{-1} = C^{-1}B$. Show that B is also invertible.
- 7. Prove that if S and T are subspaces of a vector space V then $S \cap T$ is also a subspace.
- 8. Let T be a linear transformation such that $T(\mathbf{v}_1) = \mathbf{u}_1$ and $T(\mathbf{v}_2) = \mathbf{u}_2$. If $\mathbf{w} = 3\mathbf{u}_1 2\mathbf{u}_2$, show that there exists \mathbf{x} such that $T(\mathbf{x}) = \mathbf{w}$.
- 9. Show that if the columns of an $n \times n$ matrix A are linearly independent then the columns of A^2 span \mathbb{R}^n .