Midterm 1: Review Problems

Tuesday, September 20

1 Computations

1. If $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 1 & 1 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, find all solutions to $A \mathbf{x}=\mathbf{b}$.

ANSWER: It's most straightforward to row reduce the augmented matrix.

$$
\begin{aligned}
{\left[\begin{array}{llll}
1 & 2 & 4 & 1 \\
1 & 1 & 1 & 1
\end{array}\right] } & \sim\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 0 & -2 & 1 \\
0 & 1 & 3 & 0
\end{array}\right]
\end{aligned}
$$

so x_{3} is free, $x_{2}=-3 x_{3}$, and $x_{1}=1+2 x_{3}$. In parametric vector form, the set of solutions is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+t\left[\begin{array}{c}2 \\ -3 \\ 1\end{array}\right]: t \in \mathbb{R}\right\}$
2. If $A=\left[\begin{array}{ccc}1 & -3 & -1 \\ 3 & -7 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, find all solutions to $A \mathbf{x}=\mathbf{b}$ in parametric vector form.

ANSWER: Same strategy as before.

$$
\begin{aligned}
{\left[\begin{array}{cccc}
1 & -3 & -1 & 1 \\
3 & -7 & 1 & 1
\end{array}\right] } & \sim\left[\begin{array}{ccccc}
1 & -3 & -1 & 1 & \\
0 & 2 & & 4 & -2
\end{array}\right] \\
& \sim\left[\begin{array}{ccccc}
1 & -3 & -1 & 1 & \\
0 & 1 & & 2 & -1
\end{array}\right] \\
& \sim\left[\begin{array}{ccccc}
1 & 0 & 5 & -2 & \\
0 & 1 & 2 & -1
\end{array}\right]
\end{aligned}
$$

So the solution set is $\left\{\left[\begin{array}{c}-2 \\ -1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-5 \\ -2 \\ 1\end{array}\right]: t \in \mathbb{R}\right\}$
3. With the A given above, find all solutions to $A \mathbf{x}=\mathbf{0}$.

ANSWER: The set of solutions to $A \mathbf{x}=\mathbf{0}$ is the set of all $\mathbf{v}-\mathbf{w}$, where \mathbf{v} and \mathbf{w} are solutions to $A \mathbf{x}=\mathbf{b}$ for any \mathbf{b}. The set of solutions is therefore $\left\{t\left[\begin{array}{c}-5 \\ -2 \\ 1\end{array}\right]: t \in \mathbb{R}\right\}$
4. If $A=\left[\begin{array}{ll}2 & 4 \\ 1 & \alpha\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}\beta \\ 5\end{array}\right]$, for what values of α and β will the system $A \mathbf{x}=\mathbf{b}$ have infinitely many solutions?

ANSWER: For a square system to have infinitely many solutions the columns of A must be linearly dependent, so $\alpha=2$. The system must also be consistent, so \mathbf{b} is in the span of the columns of A. But since both columns of A are spanned by a single column of A, this means that \mathbf{b} must be a multiple of the first (or equivalently, second) columns of A. Therefore $\beta=10$.
5. If $B=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & h & 1 \\ 2 & 1 & h\end{array}\right]$, find all values of h for which B is singular.

ANSWER:

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & h & 1 \\
2 & 1 & h
\end{array}\right] & =\operatorname{det}\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & h & 0 \\
2 & 1 & h-2
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & h-1 & 0 \\
2 & -1 & h-2
\end{array}\right] \\
& =(h-1)(h-2),
\end{aligned}
$$

so B is singular if and only if $h=1$ or $h=2$.
6. Show that $\left[\begin{array}{c}1 \\ 11 \\ 17\end{array}\right]$ is in Span $\left\{\left[\begin{array}{c}1 \\ -3 \\ -5\end{array}\right]\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]\right\}$

ANSWER: The most straightforward way is to take this problem as equivalent to determining whether the system $[\mathbf{u} \mathbf{v}] \mathbf{x}=\mathbf{w}$ is consistent. You can solve it by row reducing the augmented system, but in any case the particular linear combination that works is

$$
\left[\begin{array}{c}
1 \\
11 \\
17
\end{array}\right]=-3\left[\begin{array}{c}
1 \\
-3 \\
-5
\end{array}\right]+2\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]
$$

7. Find the inverse of the matrix $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8\end{array}\right]$

ANSWER: You could do this using the theorem that showed up alongside Cramer's Rule, but I don't like Cramer's Rule so I'll use row reduction (i.e. multiply by a series of row elementary matrices) instead:

$$
\begin{aligned}
{\left[\begin{array}{cccccc}
0 & 1 & 2 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
4 & -3 & 8 & 0 & 0 & 1
\end{array}\right] } & \sim\left[\begin{array}{cccccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
4 & -3 & 8 & 0 & 0 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{cccccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & -3 & -4 & 0 & -4 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{cccccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 3 & -4 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{cccccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 0 & -2 & 4 & -1 \\
0 & 0 & 2 & 3 & -4 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{cccccc}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 0 & -2 & 4 & -1 \\
0 & 0 & 1 & 3 / 2 & -2 & 1 / 2
\end{array}\right] \\
& \sim\left[\begin{array}{lllllll}
1 & 0 & 0 & -9 / 2 & 7 & -3 / 2 \\
0 & 1 & 0 & -2 & 4 & -1 \\
0 & 0 & 1 & 3 / 2 & -2 & 1 / 2
\end{array}\right]
\end{aligned}
$$

Therefore, $A^{-1}=\left[\begin{array}{ccc}-9 / 2 & 7 & -3 / 2 \\ -2 & 4 & -1 \\ 3 / 2 & -2 & 1 / 2\end{array}\right]$.
(If you want to be safe, you should check that $A A^{-1}=I$)
8. Find the determinant of

$$
\left[\begin{array}{cccc}
1 & -1 & -1 & -1 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & -1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

ANSWER: Row reduction is probably the way to go here.

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{cccc}
1 & -1 & -1 & -1 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & -1 \\
1 & 1 & 1 & 1
\end{array}\right] & =\operatorname{det}\left[\begin{array}{cccc}
1 & -1 & -1 & -1 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & -1 \\
0 & 2 & 2 & 2
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cccc}
1 & -1 & -1 & -1 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 4 & 4
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cccc}
1 & -1 & -1 & -1 \\
0 & 1 & -1 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 8
\end{array}\right] \\
& =8 .
\end{aligned}
$$

9. If $A=\left[\begin{array}{ccccc}1 & 3 & -2 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 3 & 0\end{array}\right]$, find a subset of columns of A that form a basis for the column space of A. ANSWER: Note that A is already in echelon form, so since it has three row pivots the column space is \mathbb{R}^{3}. The column vectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]$ are linearly independent and span this space (you can check that the determinant of the matrix formed by those three vectors is nonzero), and therefore form a basis.

2 True/False

For each statement, explain why it is true or give a counterexample.

1. If S is a set of linearly dependent vectors then each vector of S is a linear combination of the other vectors in S.
FALSE. Counterexample with two vectors: $\mathbf{u}=\mathbf{0}$ but $\mathbf{v} \neq \mathbf{0}$. Then \mathbf{v} and \mathbf{u} are linearly independent but \mathbf{v} is not a multiple of \mathbf{u}. Lesson: just because some vectors are redundant doesn't mean all of them are.
2. If $B=A^{-1}$ then $A B=I$ and $B A=I$. TRUE by definition
3. If the columns of an $n \times n$ matrix A are linearly dependent then $\operatorname{det}(A)=0$. TRUE, Invertible Matrix Theorem
4. If A is $m \times n$ and $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions then $A \mathbf{x}=\mathbf{b}$ has infinitely many solutions for any $\mathbf{b} \in \mathbb{R}^{m}$. FALSE. $A \mathbf{x}=\mathbf{b}$ will have either zero solutions or infinitely many.
5. If a set in \mathbb{R}^{n} is linearly dependent then the set contains more than n vectors. FALSE. Even if $n=1$, the set $\{\mathbf{0}\}$ is linearly dependent without containing more than n vectors.
6. The columns of any 4×5 matrix are linearly dependent. TRUE, since they correspond to 5 vectors in \mathbb{R}^{4}.
7. If \mathbf{x} and \mathbf{y} are linearly independent but $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ is linearly dependent, then \mathbf{z} is in $\operatorname{Span}\{\mathbf{x}, \mathbf{y}\}$. TRUE. 8. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for \mathbb{R}^{3} then $\{3 \mathbf{u}, \mathbf{u}+2 \mathbf{v}+\mathbf{w}, \mathbf{w}\}$ is also a basis. TRUE. One argument is that

$$
[3 \mathbf{u}, \mathbf{u}+2 \mathbf{v}+\mathbf{w}, \mathbf{w}]=[\mathbf{u} \mathbf{v}, \mathbf{w}]\left[\begin{array}{lll}
3 & 1 & 0 \\
0 & 2 & 0 \\
0 & 1 & 1
\end{array}\right]:=[\mathbf{u} \mathbf{v}, \mathbf{w}] B
$$

where B is invertible. So if $[\mathbf{u}, \mathbf{v}, \mathbf{w}]$ is invertible (i.e. the column vectors form a basis) then so is $[3 \mathbf{u}, \mathbf{u}+2 \mathbf{v}+\mathbf{w}, \mathbf{w}]$.
9. If A and B are invertible then $A+B$ and $A B$ are also invertible.

FALSE: $A B$ is invertible but $A+B$ might not be. If $B=-A$ then $A+B=0$, which is certainly not invertible.
10. If A is invertible then $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)$. TRUE, since $1=\operatorname{det} I=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det} A \operatorname{det} A^{-1}$.

3 Proofs

1. Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ be vectors in $\operatorname{Span}\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ and let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be vectors in $\operatorname{Span}\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right)$. Show that $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$ are in the span of $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$.
ANSWER: This is obnoxious to write in vector form, so rephrase it as a matrix problem instead. This is equivalent to showing that if $U=V X$ and $V=W Y$ then $U=W Z$ for some Z, where U, V, W have $\mathbf{u}_{i}, \mathbf{v}_{i}, \mathbf{w}_{i}$ as column vectors.
It then follows from the givens that $U=V X=(W Y) X=W(Y X)$. This completes the proof.
2. If the range space of an $n \times n$ matrix A is \mathbb{R}^{n} for $n>0$, show that A must be invertible.

ANSWER: This follows from the Invertible Matrix Theorem. ...I think that might be all you had to say?
If not, then $A \mathbf{x}=\mathbf{e}_{i}$ has a solution \mathbf{b}_{i} for each $1 \leq i \leq n$. It follows that $A B=A\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]=$ $\left[\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right]=I$, and since A is $n \times n, A$ is invertible.
3. Determine, with proof, whether the transformation $T(x, y)=(x-2 y, x+3,2 x-5 y)$ is linear.

ANSWER: Excuse the confusing typo in the original problem ("x3" should be "x +3 "). The easiest way to handle this is to note that $T(0,0)=(0,3,0)$, but $T(0,0)+T(0,0) \neq T[(0,0)+(0,0)]$.
In general, T must take $\mathbf{0}$ to $\mathbf{0}$ to be a linear transformation.
4. Let S be the set of all real-valued functions f such that $f^{\prime}=f$. Determine whether S is a subspace.

ANSWER: check that it satisfies the two definitions.
If $f, g \in S$, then $(f+g)^{\prime}=f^{\prime}+g^{\prime}=f+g$, so $f+g \in S$.
If $f \in S$, then $(c f)^{\prime}=c f^{\prime}=c f$, so $c f \in S$ for any $c \in \mathbb{R}$.
S is therefore a subspace.
5. Let W be the union of the first and third quadrants in the xy-plane, so $W=\{(x, y): x y \geq 0\}$. Determine whether W is a subspace.
ANSWER: it is straightforward to check that if $(x, y) \in W$ then $c(x, y) \in W$, but the property of closure under addition is not so clear. In fact, it is false. Try $(5,3)$ and $(-3,-5)$. Both are in W but the sum is $(2,-2)$, which is not in W. W is therefore not a subspace.
6. Let A, B, C be matrices such that A and C are invertible and $A^{-1}=C^{-1} B$. Show that B is also invertible.
ANSWER: $I=A A^{-1}=\left(A C^{-1}\right) B$, so B is invertible and $B^{-1}=A C^{-1}$.
Alternately, $C A^{-1}=C C^{-1} B=B$, and we know that C and A^{-1} are invertible so their product is also invertible.
7. Prove that if S and T are subspaces of a vector space V then $S \cap T$ is also a subspace.

ANSWER: Take any $\mathbf{u}, \mathbf{v} \in S \cap T$. Then $u, v \in S$ and $u, v \in T$. This means that for any $c \in \mathbb{R}$, $c \mathbf{u}+\mathbf{v} \in S$ and $c \mathbf{u}+\mathbf{v} \in T$ (since S and T are subspaces), so it follows that $c \mathbf{u}+\mathbf{v} \in S \cap T$. Therefore, $S \cap T$ is a subspace.
8. Let T be a linear transformation such that $T\left(\mathbf{v}_{1}\right)=\mathbf{u}_{1}$ and $T\left(\mathbf{v}_{2}\right)=\mathbf{u}_{2}$. If $\mathbf{w}=3 \mathbf{u}_{1}-2 \mathbf{u}_{2}$, show that there exists \mathbf{x} such that $T(\mathbf{x})=\mathbf{w}$.
ANSWER: $T\left(3 \mathbf{v}_{1}-2 \mathbf{v}_{2}\right)=T\left(3 \mathbf{v}_{1}\right)+T\left(-2 \mathbf{v}_{2}\right)=3 T\left(\mathbf{v}_{1}\right)-2 T\left(\mathbf{v}_{2}\right)=3 \mathbf{u}_{1}-2 \mathbf{u}_{2}=\mathbf{w}$.
9. Show that if the columns of an $n \times n$ matrix A are linearly independent then the columns of A^{2} span \mathbb{R}^{n}.
ANSWER: Since the columns of A are linearly independent and A is $n \times n, A$ is invertible. Therefore A^{2} is also invertible, and by the Invertible Matrix Theorem its columns span \mathbb{R}^{n}.

