
Midterm 1: Review Problems
Tuesday, September 20

1 Computations

1. If A =

[
1 2 4
1 1 1

]
and b =

[
1
1

]
, find all solutions to Ax = b.

ANSWER: It’s most straightforward to row reduce the augmented matrix.

[
1 2 4 1
1 1 1 1

]
∼
[
1 1 1 1
1 2 4 1

]
∼
[
1 1 1 1
0 1 3 0

]
∼
[
1 0 −2 1
0 1 3 0

]
so x3 is free, x2 = −3x3, and x1 = 1 + 2x3. In parametric vector form, the set of solutions is
1

0
0

+ t

 2
−3
1

 : t ∈ R


2. If A =

[
1 −3 −1
3 −7 1

]
and b =

[
1
1

]
, find all solutions to Ax = b in parametric vector form.

ANSWER: Same strategy as before.

[
1 −3 −1 1
3 −7 1 1

]
∼
[
1 −3 −1 1
0 2 4 −2

]
∼
[
1 −3 −1 1
0 1 2 −1

]
∼
[
1 0 5 −2
0 1 2 −1

]

So the solution set is


−2
−1
0

+ t

−5
−2
1

 : t ∈ R


3. With the A given above, find all solutions to Ax = 0.

ANSWER: The set of solutions to Ax = 0 is the set of all v − w, where v and w are solutions to

Ax = b for any b. The set of solutions is therefore

t
−5
−2
1

 : t ∈ R


4. If A =

[
2 4
1 α

]
and b =

[
β
5

]
, for what values of α and β will the system Ax = b have infinitely many

solutions?
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ANSWER: For a square system to have infinitely many solutions the columns of A must be linearly
dependent, so α = 2. The system must also be consistent, so b is in the span of the columns of A. But
since both columns of A are spanned by a single column of A, this means that b must be a multiple
of the first (or equivalently, second) columns of A. Therefore β = 10.

5. If B =

1 1 1
1 h 1
2 1 h

, find all values of h for which B is singular.

ANSWER:

det

1 1 1
1 h 1
2 1 h

 = det

1 1 0
1 h 0
2 1 h− 2


= det

1 0 0
1 h− 1 0
2 −1 h− 2


= (h− 1)(h− 2),

so B is singular if and only if h = 1 or h = 2.

6. Show that

 1
11
17

 is in Span


 1
−3
−5

2
1
1


ANSWER: The most straightforward way is to take this problem as equivalent to determining whether
the system [uv]x = w is consistent. You can solve it by row reducing the augmented system, but in
any case the particular linear combination that works is 1

11
17

 = −3

 1
−3
−5

+ 2

2
1
1



7. Find the inverse of the matrix A =

0 1 2
1 0 3
4 −3 8


ANSWER: You could do this using the theorem that showed up alongside Cramer’s Rule, but I don’t
like Cramer’s Rule so I’ll use row reduction (i.e. multiply by a series of row elementary matrices)
instead:
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0 1 2 1 0 0
1 0 3 0 1 0
4 −3 8 0 0 1

 ∼
1 0 3 0 1 0

0 1 2 1 0 0
4 −3 8 0 0 1


∼

1 0 3 0 1 0
0 1 2 1 0 0
0 −3 −4 0 −4 1


∼

1 0 3 0 1 0
0 1 2 1 0 0
0 0 2 3 −4 1


∼

1 0 3 0 1 0
0 1 0 −2 4 −1
0 0 2 3 −4 1


∼

1 0 3 0 1 0
0 1 0 −2 4 −1
0 0 1 3/2 −2 1/2


∼

1 0 0 −9/2 7 −3/2
0 1 0 −2 4 −1
0 0 1 3/2 −2 1/2



Therefore, A−1 =

−9/2 7 −3/2
−2 4 −1
3/2 −2 1/2

.

(If you want to be safe, you should check that AA−1 = I)

8. Find the determinant of 
1 −1 −1 −1
0 1 −1 −1
0 0 1 −1
1 1 1 1


ANSWER: Row reduction is probably the way to go here.

det


1 −1 −1 −1
0 1 −1 −1
0 0 1 −1
1 1 1 1

 = det


1 −1 −1 −1
0 1 −1 −1
0 0 1 −1
0 2 2 2



= det


1 −1 −1 −1
0 1 −1 −1
0 0 1 −1
0 0 4 4



= det


1 −1 −1 −1
0 1 −1 −1
0 0 1 −1
0 0 0 8


= 8.
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9. If A =

1 3 −2 1 0
0 0 1 0 1
0 0 0 3 0

, find a subset of columns of A that form a basis for the column space of A.

ANSWER: Note that A is already in echelon form, so since it has three row pivots the column space

is R3. The column vectors

1
0
0

 ,
0

1
0

, and

1
0
3

 are linearly independent and span this space (you can

check that the determinant of the matrix formed by those three vectors is nonzero), and therefore form
a basis.

2 True/False

For each statement, explain why it is true or give a counterexample.

1. If S is a set of linearly dependent vectors then each vector of S is a linear combination of the other
vectors in S.

FALSE. Counterexample with two vectors: u = 0 but v 6= 0. Then v and u are linearly independent
but v is not a multiple of u. Lesson: just because some vectors are redundant doesn’t mean all of
them are.

2. If B = A−1 then AB = I and BA = I. TRUE by definition

3. If the columns of an n×n matrix A are linearly dependent then det(A) = 0. TRUE, Invertible Matrix
Theorem

4. If A is m× n and Ax = 0 has infinitely many solutions then Ax = b has infinitely many solutions for
any b ∈ Rm. FALSE. Ax = b will have either zero solutions or infinitely many.

5. If a set in Rn is linearly dependent then the set contains more than n vectors. FALSE. Even if n = 1,
the set {0} is linearly dependent without containing more than n vectors.

6. The columns of any 4× 5 matrix are linearly dependent. TRUE, since they correspond to 5 vectors in
R4.

7. If x and y are linearly independent but {x,y, z} is linearly dependent, then z is in Span{x,y}. TRUE.

8. If {u,v,w} is a basis for R3 then {3u,u + 2v + w,w} is also a basis. TRUE. One argument is that

[3u,u + 2v + w,w] = [uv,w]

3 1 0
0 2 0
0 1 1

 := [uv,w]B,

where B is invertible. So if [u,v,w] is invertible (i.e. the column vectors form a basis) then so is
[3u,u + 2v + w,w].

9. If A and B are invertible then A+B and AB are also invertible.

FALSE: AB is invertible but A+B might not be. If B = −A then A+B = 0, which is certainly not
invertible.

10. If A is invertible then det(A−1) = 1/det(A). TRUE, since 1 = det I = det(AA−1) = detAdetA−1.
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3 Proofs

1. Let u1, . . . ,um be vectors in Span(v1, . . . ,vk) and let v1, . . . ,vk be vectors in Span(w1, . . . ,wn). Show
that u1, . . . ,um are in the span of {w1, . . . ,wn}.
ANSWER: This is obnoxious to write in vector form, so rephrase it as a matrix problem instead. This
is equivalent to showing that if U = V X and V = WY then U = WZ for some Z, where U, V,W have
ui,vi,wi as column vectors.

It then follows from the givens that U = V X = (WY )X = W (Y X). This completes the proof.

2. If the range space of an n× n matrix A is Rn for n > 0, show that A must be invertible.

ANSWER: This follows from the Invertible Matrix Theorem. . . . I think that might be all you had to
say?

If not, then Ax = ei has a solution bi for each 1 ≤ i ≤ n. It follows that AB = A[b1, . . . ,bn] =
[e1, . . . , en] = I, and since A is n× n, A is invertible.

3. Determine, with proof, whether the transformation T (x, y) = (x− 2y, x+ 3, 2x− 5y) is linear.

ANSWER: Excuse the confusing typo in the original problem (“x3” should be “x + 3”). The easiest
way to handle this is to note that T (0, 0) = (0, 3, 0), but T (0, 0) + T (0, 0) 6= T [(0, 0) + (0, 0)].

In general, T must take 0 to 0 to be a linear transformation.

4. Let S be the set of all real-valued functions f such that f ′ = f . Determine whether S is a subspace.

ANSWER: check that it satisfies the two definitions.

If f, g ∈ S, then (f + g)′ = f ′ + g′ = f + g, so f + g ∈ S.

If f ∈ S, then (cf)′ = cf ′ = cf , so cf ∈ S for any c ∈ R.

S is therefore a subspace.

5. Let W be the union of the first and third quadrants in the xy-plane, so W = {(x, y) : xy ≥ 0}.
Determine whether W is a subspace.

ANSWER: it is straightforward to check that if (x, y) ∈ W then c(x, y) ∈ W , but the property of
closure under addition is not so clear. In fact, it is false. Try (5, 3) and (−3,−5). Both are in W but
the sum is (2,−2), which is not in W . W is therefore not a subspace.

6. Let A,B,C be matrices such that A and C are invertible and A−1 = C−1B. Show that B is also
invertible.

ANSWER: I = AA−1 = (AC−1)B, so B is invertible and B−1 = AC−1.

Alternately, CA−1 = CC−1B = B, and we know that C and A−1 are invertible so their product is
also invertible.

7. Prove that if S and T are subspaces of a vector space V then S ∩ T is also a subspace.

ANSWER: Take any u,v ∈ S ∩ T . Then u, v ∈ S and u, v ∈ T . This means that for any c ∈ R,
cu+v ∈ S and cu+v ∈ T (since S and T are subspaces), so it follows that cu+v ∈ S ∩T . Therefore,
S ∩ T is a subspace.

8. Let T be a linear transformation such that T (v1) = u1 and T (v2) = u2. If w = 3u1 − 2u2, show that
there exists x such that T (x) = w.

ANSWER: T (3v1 − 2v2) = T (3v1) + T (−2v2) = 3T (v1)− 2T (v2) = 3u1 − 2u2 = w.

9. Show that if the columns of an n× n matrix A are linearly independent then the columns of A2 span
Rn.

ANSWER: Since the columns of A are linearly independent and A is n× n, A is invertible. Therefore
A2 is also invertible, and by the Invertible Matrix Theorem its columns span Rn.
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