Midterm 1: Review Problems Tuesday, September 20

1 Computations

1. If $A = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 1 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, find all solutions to $A\mathbf{x} = \mathbf{b}$. ANSWER: It's most straightforward to row reduce the augmented matrix.

 $\begin{bmatrix} 1 & 2 & 4 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 1 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 0 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 3 & 0 \end{bmatrix}$

- so x_3 is free, $x_2 = -3x_3$, and $x_1 = 1 + 2x_3$. In parametric vector form, the set of solutions is $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} + t \begin{bmatrix} 2\\-3\\1 \end{bmatrix} : t \in \mathbb{R} \right\}$
- 2. If $A = \begin{bmatrix} 1 & -3 & -1 \\ 3 & -7 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, find all solutions to $A\mathbf{x} = \mathbf{b}$ in parametric vector form. ANSWER: Same strategy as before.

$$\begin{bmatrix} 1 & -3 & -1 & 1 \\ 3 & -7 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 & -1 & 1 \\ 0 & 2 & 4 & -2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -3 & -1 & 1 \\ 0 & 1 & 2 & -1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 5 & -2 \\ 0 & 1 & 2 & -1 \end{bmatrix}$$

So the solution set is $\left\{ \begin{bmatrix} -2\\-1\\0 \end{bmatrix} + t \begin{bmatrix} -5\\-2\\1 \end{bmatrix} : t \in \mathbb{R} \right\}$

- 3. With the *A* given above, find all solutions to $A\mathbf{x} = \mathbf{0}$. ANSWER: The set of solutions to $A\mathbf{x} = \mathbf{0}$ is the set of all $\mathbf{v} - \mathbf{w}$, where \mathbf{v} and \mathbf{w} are solutions to $A\mathbf{x} = \mathbf{b}$ for any \mathbf{b} . The set of solutions is therefore $\left\{ t \begin{bmatrix} -5\\ -2\\ 1 \end{bmatrix} : t \in \mathbb{R} \right\}$
- 4. If $A = \begin{bmatrix} 2 & 4 \\ 1 & \alpha \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} \beta \\ 5 \end{bmatrix}$, for what values of α and β will the system $A\mathbf{x} = \mathbf{b}$ have infinitely many solutions?

ANSWER: For a square system to have infinitely many solutions the columns of A must be linearly dependent, so $\alpha = 2$. The system must also be consistent, so **b** is in the span of the columns of A. But since both columns of A are spanned by a single column of A, this means that **b** must be a multiple of the first (or equivalently, second) columns of A. Therefore $\beta = 10$.

5. If $B = \begin{bmatrix} 1 & 1 & 1 \\ 1 & h & 1 \\ 2 & 1 & h \end{bmatrix}$, find all values of h for which B is singular. ANSWER:

 $\det \begin{bmatrix} 1 & 1 & 1 \\ 1 & h & 1 \\ 2 & 1 & h \end{bmatrix} = \det \begin{bmatrix} 1 & 1 & 0 \\ 1 & h & 0 \\ 2 & 1 & h - 2 \end{bmatrix}$ $= \det \begin{bmatrix} 1 & 0 & 0 \\ 1 & h - 1 & 0 \\ 2 & -1 & h - 2 \end{bmatrix}$ = (h - 1)(h - 2),

so B is singular if and only if h = 1 or h = 2.

6. Show that
$$\begin{bmatrix} 1\\11\\17 \end{bmatrix}$$
 is in Span $\left\{ \begin{bmatrix} 1\\-3\\-5 \end{bmatrix} \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\}$

ANSWER: The most straightforward way is to take this problem as equivalent to determining whether the system $[\mathbf{u} \mathbf{v}]\mathbf{x} = \mathbf{w}$ is consistent. You can solve it by row reducing the augmented system, but in any case the particular linear combination that works is

$$\begin{bmatrix} 1\\11\\17 \end{bmatrix} = -3 \begin{bmatrix} 1\\-3\\-5 \end{bmatrix} + 2 \begin{bmatrix} 2\\1\\1 \end{bmatrix}$$
7. Find the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 2\\1 & 0 & 3\\4 & -3 & 8 \end{bmatrix}$

ANSWER: You could do this using the theorem that showed up alongside Cramer's Rule, but I don't like Cramer's Rule so I'll use row reduction (i.e. multiply by a series of row elementary matrices) instead:

$$\begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & -3 & -4 & 0 & -4 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 & -4 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 0 & -2 & 4 & -1 \\ 0 & 0 & 2 & 3 & -4 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 0 & -2 & 4 & -1 \\ 0 & 0 & 1 & 3/2 & -2 & 1/2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & 0 & -9/2 & 7 & -3/2 \\ 0 & 1 & 0 & -2 & 4 & -1 \\ 0 & 0 & 1 & 3/2 & -2 & 1/2 \end{bmatrix}$$

Therefore, $A^{-1} = \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix}$. (If you want to be safe, you should check that $AA^{-1} = I$)

8. Find the determinant of

$$\begin{bmatrix} 1 & -1 & -1 & -1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

ANSWER: Row reduction is probably the way to go here.

$$\det \begin{bmatrix} 1 & -1 & -1 & -1 \\ 0 & 1 & -1 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \det \begin{bmatrix} 1 & -1 & -1 & -1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 2 & 2 & 2 \end{bmatrix}$$
$$= \det \begin{bmatrix} 1 & -1 & -1 & -1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 4 & 4 \end{bmatrix}$$
$$= \det \begin{bmatrix} 1 & -1 & -1 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 8 \end{bmatrix}$$
$$= 8.$$

9. If $A = \begin{bmatrix} 1 & 3 & -2 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 3 & 0 \end{bmatrix}$, find a subset of columns of A that form a basis for the column space of A.

ANSWER: Note that A is already in echelon form, so since it has three row pivots the column space is \mathbb{R}^3 . The column vectors $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$, and $\begin{bmatrix} 1\\0\\3 \end{bmatrix}$ are linearly independent and span this space (you can check that the determinant of the matrix formed by those three vectors is nonzero), and therefore form a basis.

2 True/False

For each statement, explain why it is true or give a counterexample.

1. If S is a set of linearly dependent vectors then each vector of S is a linear combination of the other vectors in S.

FALSE. Counterexample with two vectors: $\mathbf{u} = \mathbf{0}$ but $\mathbf{v} \neq \mathbf{0}$. Then \mathbf{v} and \mathbf{u} are linearly independent but \mathbf{v} is not a multiple of \mathbf{u} . Lesson: just because *some* vectors are redundant doesn't mean all of them are.

- 2. If $B = A^{-1}$ then AB = I and BA = I. TRUE by definition
- 3. If the columns of an $n \times n$ matrix A are linearly dependent then det(A) = 0. TRUE, Invertible Matrix Theorem
- 4. If A is $m \times n$ and $A\mathbf{x} = \mathbf{0}$ has infinitely many solutions then $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions for any $\mathbf{b} \in \mathbb{R}^m$. FALSE. $A\mathbf{x} = \mathbf{b}$ will have either zero solutions or infinitely many.
- 5. If a set in \mathbb{R}^n is linearly dependent then the set contains more than *n* vectors. FALSE. Even if n = 1, the set $\{\mathbf{0}\}$ is linearly dependent without containing more than *n* vectors.
- 6. The columns of any 4×5 matrix are linearly dependent. TRUE, since they correspond to 5 vectors in \mathbb{R}^4 .
- 7. If x and y are linearly independent but $\{x, y, z\}$ is linearly dependent, then z is in Span $\{x, y\}$. TRUE.
- 8. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for \mathbb{R}^3 then $\{3\mathbf{u}, \mathbf{u} + 2\mathbf{v} + \mathbf{w}, \mathbf{w}\}$ is also a basis. TRUE. One argument is that

$$[3\mathbf{u}, \mathbf{u} + 2\mathbf{v} + \mathbf{w}, \mathbf{w}] = [\mathbf{u} \, \mathbf{v}, \mathbf{w}] \begin{bmatrix} 3 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix} := [\mathbf{u} \, \mathbf{v}, \mathbf{w}] B_{2}$$

where B is invertible. So if $[\mathbf{u}, \mathbf{v}, \mathbf{w}]$ is invertible (i.e. the column vectors form a basis) then so is $[3\mathbf{u}, \mathbf{u} + 2\mathbf{v} + \mathbf{w}, \mathbf{w}]$.

9. If A and B are invertible then A + B and AB are also invertible. FALSE: AB is invertible but A + B might not be. If B = -A then A + B = 0, which is certainly not invertible.

10. If A is invertible then $\det(A^{-1}) = 1/\det(A)$. TRUE, since $1 = \det I = \det(AA^{-1}) = \det A \det A^{-1}$.

3 Proofs

1. Let $\mathbf{u}_1, \ldots, \mathbf{u}_m$ be vectors in Span $(\mathbf{v}_1, \ldots, \mathbf{v}_k)$ and let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be vectors in Span $(\mathbf{w}_1, \ldots, \mathbf{w}_n)$. Show that $\mathbf{u}_1, \ldots, \mathbf{u}_m$ are in the span of $\{\mathbf{w}_1, \ldots, \mathbf{w}_n\}$.

ANSWER: This is obnoxious to write in vector form, so rephrase it as a matrix problem instead. This is equivalent to showing that if U = VX and V = WY then U = WZ for some Z, where U, V, W have $\mathbf{u}_i, \mathbf{v}_i, \mathbf{w}_i$ as column vectors.

It then follows from the givens that U = VX = (WY)X = W(YX). This completes the proof.

2. If the range space of an $n \times n$ matrix A is \mathbb{R}^n for n > 0, show that A must be invertible. ANSWER: This follows from the Invertible Matrix Theorem. ... I think that might be all you had to say?

If not, then $A\mathbf{x} = \mathbf{e}_i$ has a solution \mathbf{b}_i for each $1 \leq i \leq n$. It follows that $AB = A[\mathbf{b}_1, \dots, \mathbf{b}_n] = \mathbf{e}_i$ $[\mathbf{e}_1, \ldots, \mathbf{e}_n] = I$, and since A is $n \times n$, A is invertible.

- 3. Determine, with proof, whether the transformation T(x,y) = (x-2y, x+3, 2x-5y) is linear. ANSWER: Excuse the confusing typo in the original problem ("x3" should be "x + 3"). The easiest way to handle this is to note that T(0,0) = (0,3,0), but $T(0,0) + T(0,0) \neq T[(0,0) + (0,0)]$. In general, T must take **0** to **0** to be a linear transformation.
- 4. Let S be the set of all real-valued functions f such that f' = f. Determine whether S is a subspace. ANSWER: check that it satisfies the two definitions.
 - If $f, g \in S$, then (f+g)' = f' + g' = f + g, so $f + g \in S$. If $f \in S$, then (cf)' = cf' = cf, so $cf \in S$ for any $c \in \mathbb{R}$. S is therefore a subspace.
- 5. Let W be the union of the first and third quadrants in the xy-plane, so $W = \{(x, y) : xy \ge 0\}$. Determine whether W is a subspace.

ANSWER: it is straightforward to check that if $(x, y) \in W$ then $c(x, y) \in W$, but the property of closure under addition is not so clear. In fact, it is false. Try (5,3) and (-3,-5). Both are in W but the sum is (2, -2), which is not in W. W is therefore not a subspace.

6. Let A, B, C be matrices such that A and C are invertible and $A^{-1} = C^{-1}B$. Show that B is also invertible.

ANSWER: $I = AA^{-1} = (AC^{-1})B$, so B is invertible and $B^{-1} = AC^{-1}$.

Alternately, $CA^{-1} = CC^{-1}B = B$, and we know that C and A^{-1} are invertible so their product is also invertible.

7. Prove that if S and T are subspaces of a vector space V then $S \cap T$ is also a subspace.

ANSWER: Take any $\mathbf{u}, \mathbf{v} \in S \cap T$. Then $u, v \in S$ and $u, v \in T$. This means that for any $c \in \mathbb{R}$, $c\mathbf{u} + \mathbf{v} \in S$ and $c\mathbf{u} + \mathbf{v} \in T$ (since S and T are subspaces), so it follows that $c\mathbf{u} + \mathbf{v} \in S \cap T$. Therefore, $S \cap T$ is a subspace.

8. Let T be a linear transformation such that $T(\mathbf{v}_1) = \mathbf{u}_1$ and $T(\mathbf{v}_2) = \mathbf{u}_2$. If $\mathbf{w} = 3\mathbf{u}_1 - 2\mathbf{u}_2$, show that there exists **x** such that $T(\mathbf{x}) = \mathbf{w}$. A

NSWER:
$$T(3\mathbf{v}_1 - 2\mathbf{v}_2) = T(3\mathbf{v}_1) + T(-2\mathbf{v}_2) = 3T(\mathbf{v}_1) - 2T(\mathbf{v}_2) = 3\mathbf{u}_1 - 2\mathbf{u}_2 = \mathbf{w}.$$

9. Show that if the columns of an $n \times n$ matrix A are linearly independent then the columns of A^2 span \mathbb{R}^n

ANSWER: Since the columns of A are linearly independent and A is $n \times n$, A is invertible. Therefore A^2 is also invertible, and by the Invertible Matrix Theorem its columns span \mathbb{R}^n .