Solutions to Online Practice Final

Friday, December 10

Problem 1

1. Find bases for the column and null spaces of the matrix

$$A = \begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

ANSWER: Since A is already in echelon form with nonzero elements in the pivot positions, A has full rank. Thus the column space is \mathbb{R}^3 , and any basis for \mathbb{R}^3 will be an acceptable answer (in particular, the first three columns of A will do).

By the Rank Nullity Theorem, the null space of A is 1-dimensional. Solving Ax = 0 gives that

$$Null(A) = \operatorname{Span} \left\{ \begin{bmatrix} -1 \\ -1 \\ -1 \\ 1 \end{bmatrix} \right\}.$$

2. Let

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 4 \end{pmatrix}.$$

Find the eigenvalues and corresponding eigenvectors of A, and diagonalize A.

ANSWER: Since all of the rows of A are multiples of the first one, A has rank one and can therefore be factorized as $A = vv^T$ (here, $v = (1, 1, 2)^T$). Then v is the only nonzero eigenvector of A, and since Av = 6v we conclude that $\lambda_1 = 6$. Then the other eigenvalue of A is $\lambda_2 = 0$ with a two-dimensional eigenspace. This space will be spanned by any two linearly independent vectors orthogonal to v, so (1, -1, 0) and (0, -2, 1) will do.

This choice of basis for the zero eigenspace gives the diagonalization

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & -2 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 6 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & -2 \\ 2 & 0 & 1 \end{pmatrix}^{-1}$$

Consider the parameterized differential equation

$$x'' + 4x' + \alpha x = 0,$$

where α is a real constant. Find all the roots of the auxiliary equation. For what values of α are they real, complex, or multiple? In each case find the general solution to the differential equation.

ANSWER: The roots are given by $r = \frac{-4 \pm \sqrt{16 - 4\alpha}}{2} = -2 \pm \sqrt{4 - \alpha}$, and we get the following three cases:

- 1. $\alpha < 4$: the roots are real, and the general solution is $x(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$.
- 2. $\alpha = 4$: there is a double root r = -2, and the general solution is $x(t) = c_1 t e^{-2t} + c_2 e^{-2t}$.
- 3. $\alpha > 4$: the roots are complex with roots $-2 \pm i\sqrt{\alpha 4}$, and the general solution is given by $x(t) = c_1 e^{-2t} \sin t \sqrt{\alpha 4} + c_2 e^{-2t} \cos t \sqrt{\alpha 4}$.

Let q_1, \ldots, q_k be a set of orthonormal vectors in \mathbb{R}^n . Show that there exist vectors q_{k+1}, \ldots, q_n so that $Q := (q_1 \ldots q_n)$ is an orthonormal matrix.

ANSWER: We can build this matrix Q over a series of steps: If k = n, then we are done. Otherwise, the set $\{q_1, \ldots, q_k\}$ does not span \mathbb{R}^n and we can find some $v_{k+1} \in \mathbb{R}^n$ not in the span of this set. Now v_{k+1} may not be orthogonal to the vectors $\{q_1, \ldots, q_n\}$, but we can orthogonalize it using the Gram-Schmidt process and rescale so that is has norm 1. Now we have k+1 orthogonal vectors, so repeat in this manner until we have n orthogonal vectors.

Consider the function $f(x) = \cos(\sqrt{2}x)$ on the interval $(0,\pi)$.

1. Extend it to an odd function on $(-\pi, \pi)$.

$$\text{ANSWER: } \tilde{f}(x) = \begin{cases} f(x) & x \in (0,\pi) \\ x & x = 0 \\ -f(-x) & x \in (-\pi,0) \end{cases}.$$

2. Compute the Fourier sine series of the function on the interval $0, \pi$.

ANSWER:

$$c_{n} = \frac{2}{\pi} \int_{x=0}^{\pi} \cos\left(\sqrt{2}x\right) \sin(nx) dx$$

$$= \frac{2}{\pi} \int_{x=0}^{\pi} \frac{\sin\left((n+\sqrt{2})x\right) + \sin\left((n-\sqrt{2})x\right)}{2} dx$$

$$= \frac{1}{\pi} \left[-\frac{1}{n+\sqrt{2}} \cos\left((n+\sqrt{2})x\right) - \frac{1}{n-\sqrt{2}} \cos\left((n-\sqrt{2})x\right) \right]_{x=0}^{\pi}$$

$$= \frac{1}{\pi} \left[-\frac{1}{n+\sqrt{2}} - \frac{1}{n-\sqrt{2}} + \frac{1}{n+\sqrt{2}} \cos\left((n+\sqrt{2})\pi\right) + \frac{1}{n-\sqrt{2}} \cos\left((n-\sqrt{2})\pi\right) \right].$$

You might be able to simplify this a little further, but not much. At least note that this formula would not hold if the $\sqrt{2}$ term had been replaced with an integer. since for at least one term $\sin(n-k)x$ would be zero.

Find all solutions of the form u(x,t) = X(x)T(t) for the following equations:

$$u_t(x,t) = u_{xx}(x,t)$$
$$u(0,t) = 0$$
$$u_x(L,t) = 0.$$

Note that is the heat equation with one end insulated and the other end with temperature fixed to zero. Assuming that u(x,t) = X(x)T(t) and plugging this form into the first equation gives

$$X(x)T'(t) = X''(x)T(t)$$
$$\frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)}.$$

Since this is true for all times x and t, varying x while keeping t fixed (or vice versa) shows that both sides must be constants. Thus X and T satisfy

$$X''(x) = \lambda X(x)$$
$$T'(t) = \lambda T(t),$$

and we can break the solution types into three cases depending on whether $\lambda > 0$, $\lambda = 0$, or $\lambda < 0$.

1. If $\lambda > 0$ then $T(t) = ce^{\lambda t}$ and $X(x) = c_1 e^{\sqrt{\lambda}t} + c_2 e^{-\sqrt{\lambda}t}$. But equations of this type will necessarily fail the boundary conditions: if X(0) = 0 then $c_1 + c_2 = 0$, but if X'(L) = 0 then $c_1 \sqrt{\lambda} e^{\sqrt{\lambda}L} - c_2 \sqrt{\lambda} e^{-\sqrt{\lambda}L} = 0$. This gives the 2-by-2 system

$$\begin{bmatrix} 1 & 1 \\ \sqrt{\lambda}e^{\sqrt{\lambda}L} & -\sqrt{\lambda}e^{-\sqrt{\lambda}L} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Since the bottom right term is the only negative one this matrix is invertible, and so the system has only the trivial solution.

- 2. If $\lambda = 0$ then T(t) is constant and X(x) = ax + b. The left boundary condition implies that b = 0 and the right boundary implies that a = 0, so we are once again left with only the trivial solution.
- 3. If $\lambda < 0$ then $T(t) = ce^{-\lambda t}$ and $X(x) = c_1 \sin(\sqrt{\lambda}t) + c_2 \cos\sin(\sqrt{\lambda}t)$. The left boundary condition implies that $c_2 = 0$ for any λ . The right boundary condition then implies that $c_1 \sqrt{\lambda} \cos(\sqrt{\lambda}L) = 0$, which has a nontrivial solution if and only if $\sqrt{\lambda}L = \frac{\pi}{2} + n\pi$ for some integer $n \geq 0$.

Therefore, if u(x,t) = X(x)T(t) and the boundary conditions are as given, then $u(x,t) = c \sin\left(\frac{(2n+1)\pi x}{2L}\right) e^{-\left(\frac{(2n+1)\pi}{2L}\right)^2 t}$ for some $n \ge 0$. The graph below shows these solutions for L = 1 and n = 0, 1, 2 at t = 0.

