Quiz 7; Tuesday, October 18
MATH 54 with Ming Gu
GSI: Eric Hallman

Student name:

You have 15 minutes to complete the quiz. Calculators are not permitted.

1. (4 points) Find the QR factorization of the matrix $\left[\begin{array}{cc}0 & 3 \\ 1 & -2\end{array}\right]$. In other words, write the matrix as a product $Q R$, where Q is orthogonal and R is upper triangular.
2. (4 points) Let \mathbf{u} be a unit vector in \mathbb{R}^{2} and let \mathbf{x} be a vector such that $\mathbf{u}^{T} \mathbf{x}=-2$ and that \mathbf{x} and \mathbf{u} are linearly independent. Sketch and label $\mathbf{u}, \mathbf{x}, \operatorname{proj}_{\mathbf{u}}(\mathbf{x})$, and $\mathbf{x}-\operatorname{proj}_{\mathbf{u}}(\mathbf{x})$. There may be multiple correct sketches.
3. (4 points) Mark each statement as True or False. You do not have to explain your reasoning.
(a) If L is a line through $\mathbf{0}$ and $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto L, then $\|\hat{\mathbf{y}}\|$ gives the distance from \mathbf{y} to L.
(b) For any subspace W and vector $\mathbf{x}, \mathbf{x}-\operatorname{proj}_{W} \mathbf{x}$ must be an element of W^{\perp}.
(c) For any matrix $U, U U^{T} \mathbf{y}$ is the projection of \mathbf{y} onto the span of U.
(d) If Q is an orthogonal matrix then Q^{-1} is also an orthogonal matrix.
