Quiz 7; Tuesday, October 18 MATH 54 with Ming Gu GSI: Eric Hallman

Student name:

You have 15 minutes to complete the quiz. Calculators are not permitted.

1. (4 points) Find the QR factorization of the matrix $\begin{bmatrix} 0 & 3 \\ 1 & -2 \end{bmatrix}$. In other words, write the matrix as a product QR, where Q is orthogonal and R is upper triangular.

2. (4 points) Let **u** be a unit vector in \mathbb{R}^2 and let **x** be a vector such that $\mathbf{u}^T \mathbf{x} = -2$ and that **x** and **u** are linearly independent. Sketch and label **u**, **x**, $\operatorname{proj}_{\mathbf{u}}(\mathbf{x})$, and $\mathbf{x} - \operatorname{proj}_{\mathbf{u}}(\mathbf{x})$. There may be multiple correct sketches.

- 3. (4 points) Mark each statement as True or False. You do not have to explain your reasoning.
 - (a) If L is a line through **0** and $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto L, then $\|\hat{\mathbf{y}}\|$ gives the distance from \mathbf{y} to L.
 - (b) For any subspace W and vector $\mathbf{x}, \mathbf{x} \operatorname{proj}_W \mathbf{x}$ must be an element of W^{\perp} .
 - (c) For any matrix $U, UU^T \mathbf{y}$ is the projection of \mathbf{y} onto the span of U.
 - (d) If Q is an orthogonal matrix then Q^{-1} is also an orthogonal matrix.