Quiz 7; Tuesday, October 18 MATH 54 with Ming Gu GSI: Eric Hallman

Student name:

You have 15 minutes to complete the quiz. Calculators are not permitted.

1. (4 points) Find the QR factorization of the matrix $\begin{bmatrix} 0 & 3 \\ 1 & -2 \end{bmatrix}$. In other words, write the matrix as a product QR, where Q is orthogonal and R is upper triangular. ANSWER: Define $\mathbf{a}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Then \mathbf{a}_1 is already a unit vector so we can say $\mathbf{q}_1 = \mathbf{a}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $r_{11} = \|\mathbf{a}_1\| = 1$. Then $\mathbf{q}_1^T \mathbf{a}_2 = -2$, so $r_{12} = -2$. $\mathbf{a}_2 - (-2)\mathbf{q}_1 = \begin{bmatrix} 3 \\ 0 \end{bmatrix} = 3\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, so $\mathbf{q}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $r_{22} = 3$. Therefore

Therefore,

$$\begin{bmatrix} 0 & 3 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 3 \end{bmatrix}.$$

It is simple to confirm that Q is in fact orthogonal and R is upper triangular.

2. (4 points) Let \mathbf{u} be a unit vector in \mathbb{R}^2 and let \mathbf{x} be a vector such that $\mathbf{u}^T \mathbf{x} = -2$ and that \mathbf{x} and \mathbf{u} are linearly independent. Sketch and label \mathbf{u} , \mathbf{x} , $\operatorname{proj}_{\mathbf{u}}(\mathbf{x})$, and $\mathbf{x} - \operatorname{proj}_{\mathbf{u}}(\mathbf{x})$. There may be multiple correct sketches.

ANSWER: A really good sketch:

The important characteristics:

- (a) \mathbf{x} and \mathbf{u} are linearly independent, so \mathbf{x} is not on the line spanned by \mathbf{u} .
- (b) \mathbf{x} and \mathbf{u} form an obtuse angle.
- (c) The projection of \mathbf{x} onto \mathbf{u} is twice as long as \mathbf{u} , in the opposite direction.
- (d) $x \operatorname{proj}_{\mathbf{u}}(x)$ is perpendicular to **u**.
- 3. (4 points) Mark each statement as True or False. You do not have to explain your reasoning.

- (a) If L is a line through **0** and $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto L, then $\|\hat{\mathbf{y}}\|$ gives the distance from \mathbf{y} to L. FALSE: $\|\mathbf{y} \hat{\mathbf{y}}\|$ gives the distance.
- (b) For any subspace W and vector $\mathbf{x}, \mathbf{x} \operatorname{proj}_W \mathbf{x}$ must be an element of W^{\perp} . TRUE.
- (c) For any matrix $U, UU^T \mathbf{y}$ is the projection of \mathbf{y} onto the span of U. FALSE: U must be orthogonal for this to work in general.
- (d) If Q is an orthogonal matrix then Q^{-1} is also an orthogonal matrix. TRUE: since $Q^{-1} = Q^T$, $(Q^{-1})^T Q^{-1} = (Q^T)^T Q^T = Q Q^T = I$.