Quiz 7; Tuesday, October 18
MATH 54 with Ming Gu
GSI: Eric Hallman

Student name:

You have 15 minutes to complete the quiz. Calculators are not permitted.

1. (4 points) Find the QR factorization of the matrix $\left[\begin{array}{cc}0 & 3 \\ 1 & -2\end{array}\right]$. In other words, write the matrix as a product $Q R$, where Q is orthogonal and R is upper triangular.
ANSWER: Define $\mathbf{a}_{1}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}3 \\ -2\end{array}\right]$. Then \mathbf{a}_{1} is already a unit vector so we can say $\mathbf{q}_{1}=\mathbf{a}_{1}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $r_{11}=\left\|\mathbf{a}_{1}\right\|=1$.
Then $\mathbf{q}_{1}^{T} \mathbf{a}_{2}=-2$, so $r_{12}=-2 . \mathbf{a}_{2}-(-2) \mathbf{q}_{1}=\left[\begin{array}{l}3 \\ 0\end{array}\right]=3\left[\begin{array}{l}1 \\ 0\end{array}\right]$, so $\mathbf{q}_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $r_{22}=3$.
Therefore,

$$
\left[\begin{array}{cc}
0 & 3 \\
1 & -2
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
0 & 3
\end{array}\right]
$$

It is simple to confirm that Q is in fact orthogonal and R is upper triangular.
2. (4 points) Let \mathbf{u} be a unit vector in \mathbb{R}^{2} and let \mathbf{x} be a vector such that $\mathbf{u}^{T} \mathbf{x}=-2$ and that \mathbf{x} and \mathbf{u} are linearly independent. Sketch and label $\mathbf{u}, \mathbf{x}, \operatorname{proj}_{\mathbf{u}}(\mathbf{x})$, and $\mathbf{x}-\operatorname{proj}_{\mathbf{u}}(\mathbf{x})$. There may be multiple correct sketches.
ANSWER: A really good sketch:

The important characteristics:
(a) \mathbf{x} and \mathbf{u} are linearly independent, so \mathbf{x} is not on the line spanned by \mathbf{u}.
(b) \mathbf{x} and \mathbf{u} form an obtuse angle.
(c) The projection of \mathbf{x} onto \mathbf{u} is twice as long as \mathbf{u}, in the opposite direction.
(d) $x-\operatorname{proj}_{\mathbf{u}}(x)$ is perpendicular to \mathbf{u}.
3. (4 points) Mark each statement as True or False. You do not have to explain your reasoning.
(a) If L is a line through $\mathbf{0}$ and $\hat{\mathbf{y}}$ is the orthogonal projection of \mathbf{y} onto L, then $\|\hat{\mathbf{y}}\|$ gives the distance from \mathbf{y} to L. FALSE: $\|\mathbf{y}-\hat{\mathbf{y}}\|$ gives the distance.
(b) For any subspace W and vector $\mathbf{x}, \mathbf{x}-\operatorname{proj}_{W} \mathbf{x}$ must be an element of W^{\perp}. TRUE.
(c) For any matrix $U, U U^{T} \mathbf{y}$ is the projection of \mathbf{y} onto the span of U. FALSE: U must be orthogonal for this to work in general.
(d) If Q is an orthogonal matrix then Q^{-1} is also an orthogonal matrix. TRUE: since $Q^{-1}=Q^{T}$, $\left(Q^{-1}\right)^{T} Q^{-1}=\left(Q^{T}\right)^{T} Q^{T}=Q Q^{T}=I$.

