Quiz 6; Tuesday, October 11
MATH 54 with Ming Gu
GSI: Eric Hallman

Student name:

You have 15 minutes to complete the quiz. Calculators are not permitted.

1. (4 points) Find the eigenvalues and eigenvectors of the matrix $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$. State which eigenvector is associated with which eigenvalue.
ANSWER: the characteristic polynomial of the matrix is $(2-\lambda)(2-\lambda)-1=\lambda^{2}-4 \lambda+3=(\lambda-3)(\lambda-1)$, so the eigenvalues are 1 and 3.
An eigenvector with $\lambda=1$ will be in the null space of $A-I$, which is $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, so any scalar multiple of $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ will do.
As for the eigenvector $\lambda=3, A-3 I$ is equal to $\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]$, so any scalar multiple of $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ will be an eigenvector.
2. (2 points) Find an invertible matrix P and a diagonal matrix D such that $P^{-1} A P=D$.

ANSWER: $P=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right], D=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$, perhaps different by scaling the columns of P or by swapping the columns of both P and D.
3. (6 points) Mark each statement as True or False. You do not have to explain your reasoning.
(a) If A is similar to B then A^{2} is similar to B^{2}. TRUE: If $P A P^{-1}=B$ then $B^{2}=P A P^{-1} P A P^{-1}=$ $P A^{2} P^{-1}$.
(b) If A is similar to B then A and B have the same eigenvalues and eigenvectors. FALSE: they will have the same eigenvalues but will not in general have the same eigenvectors.
(c) If $A P=P D$ where D is a diagonal matrix then the nonzero columns of P are eigenvectors of A. TRUE.
(d) Elementary row operations do not change the eigenvalues of a matrix. FALSE. Multiplying a row by a scalar can easily change the eigenvalues of a matrix.
(e) If a matrix is diagonalizable then its columns are linearly independent. FALSE: As a silly example, $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ is diagonalizable. More generally, if its columns are LI then the matrix is invertible, but a matrix does not need to be invertible in order to be diagonalizable.
(f) Any eigenvector of A is also an eigenvector of A^{2}. TRUE: $A^{2} v=A(A v)=A(\lambda v)=\lambda(A v)=\lambda^{2} v$.

