Quiz 5; Tuesday, October 4
MATH 54 with Ming Gu
GSI: Eric Hallman

Student name:

You have 15 minutes to complete the quiz. Calculators are not permitted.

1. (4 points) If $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}=\left\{\left[\begin{array}{l}4 \\ 4\end{array}\right],\left[\begin{array}{l}8 \\ 4\end{array}\right]\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}=\left\{\left[\begin{array}{l}2 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 2\end{array}\right]\right\}$ find the change-ofcoordinates matrix from \mathcal{B} to \mathcal{C} and from \mathcal{C} to \mathcal{B}. Be sure to specify which is which. (Hint: once you have found one it should not be too hard to find the other.)
2. (4 points) Given that $\lambda=4$ is an eigenvalue of $\left[\begin{array}{ccc}3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5\end{array}\right]$, find one corresponding eigenvector.
3. (4 points) Mark each statement as True or False. You do not have to explain your reasoning.
(a) If the null space of an 8×7 matrix A is 5 -dimensional, then the row space of A must be 3 dimensional.
(b) The row space of A^{T} is the same as the column space of A.
(c) If $A \mathbf{x}=\lambda \mathbf{x}$ for some vector \mathbf{x}, then λ is an eigenvalue of A.
(d) If two matrices A and B are row equivalent then they have the same eigenvalues.
