Quiz 5; Tuesday, October 4 MATH 54 with Ming Gu

GSI: Eric Hallman

Student name:

You have 15 minutes to complete the quiz. Calculators are not permitted.

1. (4 points) If $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\} = \left\{\begin{bmatrix}4\\4\end{bmatrix}, \begin{bmatrix}8\\4\end{bmatrix}\right\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\} = \left\{\begin{bmatrix}2\\2\end{bmatrix}, \begin{bmatrix}-2\\2\end{bmatrix}\right\}$ find the change-of-coordinates matrix from \mathcal{B} to \mathcal{C} and from \mathcal{C} to \mathcal{B} . Be sure to specify which is which. (Hint: once you have found one it should not be too hard to find the other.)

2. (4 points) Given that $\lambda=4$ is an eigenvalue of $\begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{bmatrix}$, find one corresponding eigenvector.

- 3. (4 points) Mark each statement as True or False. You do not have to explain your reasoning.
 - (a) If the null space of an 8×7 matrix A is 5-dimensional, then the row space of A must be 3-dimensional.
 - (b) The row space of A^T is the same as the column space of A.
 - (c) If $A\mathbf{x} = \lambda \mathbf{x}$ for some vector \mathbf{x} , then λ is an eigenvalue of A.
 - (d) If two matrices A and B are row equivalent then they have the same eigenvalues.