Quiz 4; Tuesday, September 27
MATH 54 with Ming Gu
GSI: Eric Hallman

Student name:

You have 15 minutes to complete the quiz. Calculators are not permitted.

1. (4 points) If $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ and $\mathbf{x}=\left[\begin{array}{c}4 \\ -1\end{array}\right]$, find $[\mathbf{x}]_{\mathcal{B}}$.
2. (4 points) Find bases for the null space and the column space of $\left[\begin{array}{lllll}1 & 2 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$. Be sure to state which basis is which.
3. (4 points) Mark each statement as True or False. You do not have to explain your reasoning.
(a) There are exactly three 2 -dimensional subspaces of \mathbb{R}^{3}.
(b) Every 2-dimensional vector space is isomorphic to \mathbb{R}^{2}.
(c) If $T: V \rightarrow W$ is an isomorphism between n-dimensional vector spaces and $\left\{v_{1}, \ldots, v_{n}\right\}$ are linearly independent in V, then $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ span W.
(d) The null space of A is equal to the column space of A^{T}.
