Quiz 4: Tuesday, September 27 MATH 54 with Ming Gu **GSI:** Eric Hallman

Student name:

You have 15 minutes to complete the quiz. Calculators are not permitted.

- 1. (4 points) If $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\} = \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\1 \end{bmatrix} \right\}$ and $\mathbf{x} = \begin{bmatrix} 4\\-1 \end{bmatrix}$, find $[\mathbf{x}]_{\mathcal{B}}$. $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 1 & 2\\ 2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 4\\ -1 \end{bmatrix} = \frac{-1}{3} \begin{bmatrix} 1 & -2\\ -2 & 1 \end{bmatrix} \begin{bmatrix} 4\\ -1 \end{bmatrix} = \begin{bmatrix} -2\\ 3 \end{bmatrix}.$
- 2. (4 points) Find bases for the null space and the column space of $\begin{bmatrix} 1 & 2 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$. Be sure to state

which basis is which.

The column space of A is all of \mathbb{R}^3 since A has three pivots, so any old basis will do. The standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is the simplest.

If we set up the equation $A\mathbf{x} = \mathbf{0}$ in terms of free variables we might get that x_2 and x_5 are free, so let the basis be determined by the two solutions that follow from $(x_2, x_5) = (1, 0)$ and $(x_2, x_5) = (0, 1)$:

these are the vectors $\left\{ \begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 5\\0\\-1\\0\\1 \end{bmatrix} \right\}$. These two vectors together make a basis for the null space.

(We can also tell that the null space must be 2-dimensional because A acts on vectors in \mathbb{R}^5 and has 3 pivots, so 5-3=2.)

- 3. (4 points) Mark each statement as True or False. You do not have to explain your reasoning.
 - (a) There are exactly three 2-dimensional subspaces of \mathbb{R}^3 . FALSE: there are infinitely many.
 - (b) Every 2-dimensional vector space is isomorphic to \mathbb{R}^2 . TRUE.
 - (c) If $T: V \to W$ is an isomorphism between n-dimensional vector spaces and $\{v_1, \ldots, v_n\}$ are linearly independent in V, then $\{T(v_1), \ldots, T(v_n)\}$ span W. TRUE, since the v_i form a basis and so the $T(v_i)$ must also form a basis.
 - (d) The null space of A is equal to the column space of A^T . FALSE.