Quiz 4; Tuesday, September 27
MATH 54 with Ming Gu
GSI: Eric Hallman

Student name:

You have 15 minutes to complete the quiz. Calculators are not permitted.

1. (4 points) If $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ and $\mathbf{x}=\left[\begin{array}{c}4 \\ -1\end{array}\right]$, find $[\mathbf{x}]_{\mathcal{B}}$.

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
4 \\
-1
\end{array}\right]=\frac{-1}{3}\left[\begin{array}{cc}
1 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{c}
4 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
3
\end{array}\right]
$$

2. (4 points) Find bases for the null space and the column space of $\left[\begin{array}{lllll}1 & 2 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$. Be sure to state which basis is which.
The column space of A is all of \mathbb{R}^{3} since A has three pivots, so any old basis will do. The standard basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ is the simplest.
If we set up the equation $A \mathbf{x}=\mathbf{0}$ in terms of free variables we might get that x_{2} and x_{5} are free, so let the basis be determined by the two solutions that follow from $\left(x_{2}, x_{5}\right)=(1,0)$ and $\left(x_{2}, x_{5}\right)=(0,1)$: these are the vectors $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}3 \\ 0 \\ -1 \\ 0 \\ 1\end{array}\right]\right\}$. These two vectors together make a basis for the null space.
(We can also tell that the null space must be 2-dimensional because A acts on vectors in \mathbb{R}^{5} and has 3 pivots, so $5-3=2$.)
3. (4 points) Mark each statement as True or False. You do not have to explain your reasoning.
(a) There are exactly three 2-dimensional subspaces of \mathbb{R}^{3}. FALSE: there are infinitely many.
(b) Every 2-dimensional vector space is isomorphic to \mathbb{R}^{2}. TRUE.
(c) If $T: V \rightarrow W$ is an isomorphism between n-dimensional vector spaces and $\left\{v_{1}, \ldots, v_{n}\right\}$ are linearly independent in V, then $\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ span W. TRUE, since the v_{i} form a basis and so the $T\left(v_{i}\right)$ must also form a basis.
(d) The null space of A is equal to the column space of A^{T}. FALSE.
