Quiz 3; Tuesday, September 13
MATH 54 with Ming Gu
GSI: Eric Hallman

Student name:

You have 15 minutes to complete the quiz. Calculators are not permitted.

1. (4 points) Let $A=\left[\begin{array}{ll}3 & 1 \\ 7 & 2\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & -1 & 0 \\ -4 & 3 & 1\end{array}\right]$. Compute the following or state which don't exist.
(a) $A B$

$$
A B=\left[\begin{array}{ccc}
2 & 0 & 1 \\
6 & -1 & 2
\end{array}\right]
$$

(b) $B A$ DOES NOT EXIST.
(c) A^{-1}

$$
A^{-1}=\left[\begin{array}{cc}
-2 & 1 \\
7 & -3
\end{array}\right]
$$

(d) An elementary row matrix E that swaps the rows of A

$$
E=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

2. (4 points) Suppose A is a 4×7 matrix (i.e. 4 rows and 7 columns) and B is a 7×4 matrix. Of the four matrices $A, B, A B$, or $B A$, list all that could possibly represent a linear transformation that is. . .
(a) one-to-one and onto: $A B$ ONLY
(b) one-to-one but not onto: B ONLY
(c) neither one-to-one nor onto: ALL OF THEM
3. (4 points) Mark each statement as True or False. You do not have to explain your reasoning.
(a) If A is an $n \times n$ matrix and $A \mathbf{x}=\mathbf{e}_{j}$ is consistent for every $j \in\{1, \ldots, n\}$ then A is invertible. TRUE
(b) If A and B are invertible then $A B$ is also invertible and $(A B)^{-1}=A^{-1} B^{-1}$. FALSE
(c) If the columns of an $n \times n$ matrix A span \mathbb{R}^{n} then the columns are linearly independent. TRUE
(d) $B=A^{-1}$ if and only if $A B=B A$. FALSE
