Quiz 12; Tuesday, November 29
MATH 54 with Ming Gu
GSI: Eric Hallman

Student name:

You have 15 minutes to complete the quiz. Calculators are not permitted.

For any two piecewise continuous functions f and g on the interval $[-\pi, \pi]$, define $\langle f, g\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) g(x) d x$ and $\|f\|^{2}=\sqrt{\langle f, f\rangle}$.

1. (6 points) Find $\|\sin x\|$.

ANSWER:

$$
\begin{aligned}
\|\sin x\|^{2} & =\frac{1}{\pi} \int_{-\pi}^{\pi} \sin ^{2} x d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1-\cos 2 x}{2} d x \\
& =\frac{1}{\pi}\left(\frac{x}{2}-\frac{\sin 2 x}{4}\right) \|_{-\pi}^{\pi} \\
& =1
\end{aligned}
$$

Therefore, $\|\sin x\|=\sqrt{1}=1$.
2. (6 points) Show that $\sin 2 x$ and $\cos 4 x$ are orthogonal. (Hint: use what you know about odd and even functions.)
ANSWER: $\sin 2 x$ is odd and $\cos 4 x$ is even, so $\sin (2 x) \cos (4 x)$ is odd. The integral of an odd function on the interval $[-\pi, \pi]$ is zero since the integral is symmetric about zero, and so the inner product is zero.
3. (Zero bonus points) Show that $\sin m x$ and $\sin n x$ are orthogonal whenever $m \neq n$.

Use the two identities

$$
\begin{aligned}
& \cos ((m+n) x)=\cos m x \cos n x-\sin m x \sin n x \\
& \cos ((m-n) x)=\cos m x \cos n x+\sin m x \sin n x
\end{aligned}
$$

Subtracting the second from the first and dividing by two gives the identity

$$
\frac{\cos (m-n) x-\cos (m+n) x}{2}=\sin m x \sin n x
$$

Therefore,

$$
\begin{aligned}
\int_{-\pi}^{\pi} \sin (m x) \sin (n x) d x & =\int_{-\pi}^{\pi} \frac{\cos (m-n) x-\cos (m+n) x}{2} d x \\
& =\frac{1}{2} \int_{-\pi}^{\pi} \cos (m-n) x d x-\frac{1}{2} \int_{-\pi}^{\pi} \cos (m+n) x d x
\end{aligned}
$$

The second integral is always zero and the first one is zero provided $m \neq n$. Therefore, $\sin m x$ and $\sin n x$ are orthogonal (with respect to this inner product).

