Quiz 11; Tuesday, November 22
MATH 54 with Ming Gu
GSI: Eric Hallman

Student name:

You have 15 minutes to complete the quiz. Calculators are not permitted.

Consider the system $\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t), t \geq 0$, with $\mathbf{A}=\left[\begin{array}{cc}1 & \sqrt{3} \\ \sqrt{3} & -1\end{array}\right]$.

1. (6 points) Find the eigenvalues and eigenvectors of the matrix \mathbf{A}.

ANSWER: The characteristic polynomial of A is $\lambda^{2}-4$, so the eigenvalues are $\lambda_{1}=2, \lambda_{2}=-2$. The corresponding eigenvectors are $\mathbf{v}_{1}=\left[\begin{array}{c}\sqrt{3} \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ \sqrt{3}\end{array}\right]$.
2. (3 points) Find the general solution to the system $\mathbf{x}^{\prime}(t)=\mathbf{A} \mathbf{x}(t)$.

ANSWER: $\mathbf{x}(t)=c_{1} e^{2 t} \mathbf{v}_{1}+c_{2} e^{-2 t} \mathbf{v}_{2}$.
3. (3 points) Sketch the trajectory of the solution having initial vector $\mathbf{x}(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

ANSWER: something like this very professional-looking sketch. The eigenvector axes are in green and the trajectory of the solution is in blue.

