Quiz 10; Tuesday, November 15
MATH 54 with Ming Gu
GSI: Eric Hallman

Student name:

You have 15 minutes to complete the quiz. Calculators are not permitted.

1. (4 points) Verify that the vector functions $\mathbf{x}_{1}=\left[\begin{array}{l}e^{t} \\ e^{t}\end{array}\right]$ and $\mathbf{x}_{2}=\left[\begin{array}{c}e^{-t} \\ 3 e^{-t}\end{array}\right]$ are solutions to the homogeneous system $\mathbf{x}^{\prime}=\mathbf{A x}=\left[\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right] \mathbf{x}$ on \mathbb{R}.
ANSWER:

$$
\begin{gathered}
\mathbf{A} \mathbf{x}_{1}=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
e^{t} \\
e^{t}
\end{array}\right]=\left[\begin{array}{c}
e^{t} \\
e^{t}
\end{array}\right]=\mathbf{x}_{1}^{\prime} \\
\mathbf{A} \mathbf{x}_{2}=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]\left[\begin{array}{c}
e^{-t} \\
3 e^{-t}
\end{array}\right]=\left[\begin{array}{c}
-e^{-t} \\
-3 e^{-t}
\end{array}\right]=\mathbf{x}_{2}^{\prime}
\end{gathered}
$$

2. (3 points) Verify that $\mathbf{x}_{p}=\left[\begin{array}{c}t \\ 2 t-1\end{array}\right]$ is a particular solution to the nonhomogeneous system $\mathbf{x}^{\prime}=\mathbf{A x}+\mathbf{f}(t)$, where $\mathbf{f}(t)=\left[\begin{array}{l}0 \\ t\end{array}\right]$.
ANSWER:

$$
\mathbf{A} \mathbf{x}_{p}+\mathbf{f}(t)=\left[\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right]\left[\begin{array}{c}
t \\
2 t-1
\end{array}\right]+\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\mathbf{x}_{p}^{\prime}
$$

3. (1 points) Write the general solution for the problem $\mathbf{x}^{\prime}=\mathbf{A x}+\mathbf{f}(t)$.

ANSWER: $\mathbf{x}=\mathbf{x}_{p}+c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}$ for any $c_{1}, c_{2} \in \mathbb{R}$.
4. (4 points) Demonstrate rigorously that $\mathbf{x}_{1}=\left[\begin{array}{c}e^{t} \\ e^{t}\end{array}\right]$ and $\mathbf{x}_{2}=\left[\begin{array}{c}e^{-t} \\ 3 e^{-t}\end{array}\right]$ are linearly independent on \mathbb{R}.

ANSWER: It suffices to check that \mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent in their first coordinate, so we just have to show that e^{t} and e^{-t} are linearly independent.
Method 1: both are solutions to $(D+1)(D-1) y=0$, so use the Wronskian.
Method 2: show that they are linearly independent on the set $\{0,1\}$ or something like that, which will show that they are LID on \mathbb{R} as a whole.
Method 3: if they were LD, then $e^{t} / e^{-t}=e^{2 t}$ would be a constant function, but it isn't. By the contrapositive, they are linearly dependent.

