Chapter 7.1-2: Probability!

Wednesday, October 21

Summary

- Probability of an event $E \subset S: p(E)=\sum_{s \in E} p(s)$.
- Uniform distribution: if $|S|=n$ then $p(s)=1 / n$ for all $s \in S$.
- $p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right)$
- Conditional probability: $p(E \mid F)=\frac{p(E \cap F)}{p(F)}$.
- E, F independent if $p(E \cap F)=p(E) \cdot p(F)$.
- E_{1}, \ldots, E_{n} mutually independent if $p\left(E_{i_{1}} \cap E_{i_{2}} \cap \cdots \cap E_{i m}\right)=p\left(E_{i_{1}}\right) p\left(E_{i_{2}}\right) \cdots p\left(E_{i_{m}}\right)$ for any subset $\left\{i_{1}, \ldots i_{m}\right\} \subset\{1, \ldots, n\}$.

Warmup

Suppose we roll a pair of fair six-sided dice.

1. What is the chance of rolling a seven?
2. What is the chance of not rolling a seven?
3. What is the chance of rolling an odd number or a number divisible by 3 ?
4. Say we roll the dice one at a time. If the first die lands on a 4 , what is the chance that the second die will also land on a 4 ?

Uniform Probability

1. What is the probability that a 5-card hand drawn from a well-shuffled deck contains five cards of the same suit?
2. Four friends are playing a game of Monopoly and want to roll the dice to decide who goes first. Find a way to decide who goes first that (1) requires only one roll of a pair of dice, and (2) gives every player an equal probability of going first.
3. Which is more likely: rolling an 8 when a total of 2 dice are rolled or rolling a total of 8 when three dice are rolled?
4. Which is more likely: flipping exactly 5 heads out of 10 or flipping exactly 10 heads out of 20 ?

Conditional Probability and Independence

1. You roll 2 dice. What is the probability that the sum is 7 if at least one of the two numbers is a 5 ?
2. You roll 2 dice. What is the probability that the sum is 7 if exactly one of the two numbers is a 5 ?
3. You flip 4 coins. What is the probability that you have flipped four heads if at least three of the coins landed on heads?
4. You flip 4 coins. What is the probability that you have flipped four heads if the first three coins landed on heads?
5. If E and F are independent events, prove or disprove that \bar{E} and F are independent events.
6. A three-member jury has two members who make the correct decision with probability p and one member who flips a fair coin. A one-member jury will make the correct decision with probability p. Which jury is more likely to make the correct decision?
7. Two coins are flipped. Let A be the event that the first coin lands on heads, let B be the event that the second coin lands on heads, and let C be the event that an even number of heads is flipped. Show that A, B, and C are pairwise independent but not mutually independent.
