Chapter 5.1-5.3: More Induction and Recursion Wednesday, October 7

Warmup

- 1. Prove: If $A_{n+1} \subseteq A_n$ for all $n \ge 1$ then $\bigcap_{i=1}^n A_i = A_n$.
- 2. What, if anything, is wrong with the following proof?

Theorem 0.1 (Questionable Theorem) Define f_n by $f_0 = 0$, $f_1 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$. Then for all $n \ge 1$, $3f_n + f_{n+1} = 2 \cdot f_{n+2}$.

Proof: For the base case: $f_1 = 1$, $f_2 = 1$, and $f_3 = 2$, so when n = 1 we have $3f_n + f_{n+1} = 3f_1 + f_2 = 4 = 2 \cdot f_3 = 2 \cdot f_{n+2}$.

Inductive step: Suppose that $3f_n + f_{n+1} = 2f_{n+2}$. Then

$$3f_{n+1} + f_{n+2} = 3(f_n + f_{n-1}) + f_{n+1} + f_n$$

= $(3f_n + f_{n+1}) + (3f_{n-1} + f_n)$
= $2f_{n+2} + 2f_{n+1}$
= $2f_{n+3}$.

By induction, $3f_n + f_{n+1} = 2f_{n+2}$ for all $n \ge 1$.

3. Which Fibonacci numbers are even? Come up with a conjecture and prove it.

Recursion

- 1. Define a sequence a_n by $a_0 = 1$, $a_1 = 3$ and $a_n = a_{n-1} + 2 \cdot a_{n-2}$ for $n \ge 2$. Find a_6 . Prove that $a_n = \frac{2^{n+2} (-1)^n}{3}$.
- 2. Define a sequence a_n by $a_0 = 1$, $a_1 = 3$, and $a_n = \sum_{i=1}^{n-1} a_i$ for $n \ge 2$. Find a formula for a_n and prove that it is correct.
- 3. Prove: $gcd(f_{n+1}, f_n) = 1$ for all $n \ge 0$.
- 4. Prove that $f_1^2 + f_2^2 + \dots + f_n^2 = f_n f_{n+1}$ for $n \ge 1$.
- 5. Prove that $f_1 + f_3 + \dots + f_{2n-1} = f_{2n}$ for $n \ge 1$.
- 6. (\bigstar) Prove that $gcd(f_m, f_n) = f_{gcd(m,n)}$ for any $m, n \in \mathbb{N}$.

Recursive Games

You and a friend are playing a game: there is a pile of stones. You take turns removing stones from the pile—during your turn, you may remove 1, 2, or 3 stones. Whoever removes the last stone wins.

- 1. Prove that the second player has a winning strategy if the pile begins with 8 stones.
- 2. Who has a winning strategy if the pile begins with 15 stones? 16 stones?
- 3. Suppose that the pile has *n* stones, and you may choose whether to go first or second. How should you decide?