Chapter 5.1-5.3: More Induction and Recursion
 Wednesday, October 7

Warmup

1. Prove: If $A_{n+1} \subseteq A_{n}$ for all $n \geq 1$ then $\bigcap_{i=1}^{n} A_{i}=A_{n}$.

Base case: when $n=1, A_{1}=A_{1}$.
Inductive step: Use the fact that if $A \subseteq B$ then $A \cap B=A$. If $\bigcap_{i=1}^{n} A_{i}=A_{n}$, then

$$
\begin{aligned}
\bigcap_{i=1}^{n+1} A_{i} & =\bigcap_{i=1}^{n} A_{i} \cap A_{n+1} \\
& =A_{n} \cap A_{n+1} \\
& =A_{n+1} .
\end{aligned}
$$

2. What, if anything, is wrong with the following proof?

Theorem 0.1 (Questionable Theorem) Define f_{n} by $f_{0}=0$, $f_{1}=1$, and $f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 2$. Then for all $n \geq 1,3 f_{n}+f_{n+1}=2 \cdot f_{n+2}$.

Proof: For the base case: $f_{1}=1, f_{2}=1$, and $f_{3}=2$, so when $n=1$ we have $3 f_{n}+f_{n+1}=3 f_{1}+f_{2}=$ $4=2 \cdot f_{3}=2 \cdot f_{n+2}$.
Inductive step: Suppose that $3 f_{n}+f_{n+1}=2 f_{n+2}$. Then

$$
\begin{aligned}
3 f_{n+1}+f_{n+2} & =3\left(f_{n}+f_{n-1}\right)+f_{n+1}+f_{n} \\
& =\left(3 f_{n}+f_{n+1}\right)+\left(3 f_{n-1}+f_{n}\right) \\
& =2 f_{n+2}+2 f_{n+1} \\
& =2 f_{n+3}
\end{aligned}
$$

By induction, $3 f_{n}+f_{n+1}=2 f_{n+2}$ for all $n \geq 1$.

Answer: The "proof" of the inductive step requires the formula to work for both n and $n-1$, not just n. We therefore need to check 2 base cases in a row for the proof to be valid. As it turns out, the theorem is incorrect.
3. Which Fibonacci numbers are even? Come up with a conjecture and prove it.

If $3 \mid n$ then f_{n} is even. Otherwise n is odd.
Proof: Base case: $f_{0}=0$ is even while $f_{1}=1$ is odd.
Inductive step: Suppose that the even-odd pattern holds for all $k \leq n$. Then if $3 \mid n+1$, neither n nor $n-1$ are divisible by 3 . Thus $f_{n+1}=f_{n}+f_{n-1}$ is the sum of two odd numbers and is therefore even. If $3 \nmid n+1$, exactly one of n and $n-1$ is divisible by 3 . Thus $f_{n+1}=f_{n}+f_{n-1}$ is the sum of one even number and one odd number and so is odd.

This completes the proof by induction - note that two consecutive examples were required for the base case.

Recursion

1. Define a sequence a_{n} by $a_{0}=1, a_{1}=3$ and $a_{n}=a_{n-1}+2 \cdot a_{n-2}$ for $n \geq 2$. Find a_{6}. Prove that $a_{n}=\frac{2^{n+2}-(-1)^{n}}{3}$.

a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}
1	3	5	11	21	43	85

Base case for proof by induction: The formula works for $n=0$ and $n=1$.
Inductive step: Suppose that the formula works for n AND $n+1$. Then

$$
\begin{aligned}
a_{n+2} & =a_{n+1}+2 a_{n} \\
& =\frac{2^{n+3}-(-1)^{n+1}}{3}+2 \cdot \frac{2^{n+2}-(-1)^{n}}{3} \\
& =\frac{2 \cdot 2^{n+3}-(-1)^{n}}{3} \\
& =\frac{2^{n+4}-(-1)^{n+2}}{3}
\end{aligned}
$$

Note that this time we needed to use the formula for both a_{n+1} and a_{n}, so we needed to prove two base cases.
2. Define a sequence a_{n} by $a_{0}=1, a_{1}=3$, and $a_{n}=\sum_{i=1}^{n-1} a_{i}$ for $n \geq 2$. Find a formula for a_{n} and prove that it is correct.
$a_{2}=4, a_{3}=8, a_{4}=16$. Conjecture that for $n \geq 2, a_{n}=2^{n}$.
Base case: when $n=2, a_{2}=4=2^{2}$.
Inductive step: If $a_{n}=2^{n}$, then

$$
\begin{aligned}
a_{n+1} & =\sum_{i=1}^{n} a_{i} \\
& =\sum_{i=1}^{n-1} a_{i}+a_{n} \\
& =a_{n}+a_{n} \\
& =2^{n}+2^{n} \\
& =2^{n+1}
\end{aligned}
$$

This completes the proof by induction.
3. Prove: $\operatorname{gcd}\left(f_{n+1}, f_{n}\right)=1$ for all $n \geq 0$.

Proof: $\operatorname{gcd}\left(f_{0}, f_{1}\right)=\operatorname{gcd}(0,1)=1$ for the base case $n=0$.
Inductive step: use the fact that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a-b, b)$. Then if the proposition holds for n, we have $\operatorname{gcd}\left(f_{n+2}, f_{n+1}\right)=\operatorname{gcd}\left(f_{n+2}-f_{n+1}, f_{n+1}\right)=\operatorname{gcd}\left(f_{n}, f_{n+1}\right)=1$.
4. Prove that $f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}=f_{n} f_{n+1}$ for $n \geq 1$.

Base case: it works for $n=1$ since $f_{1}^{2}=1 \cdot 1=f_{1} f_{2}$.
Inductive step: if the formula holds for n, then

$$
\begin{aligned}
\left(f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}\right)+f_{n+1}^{2} & =f_{n} f_{n+1}+f_{n+1} f_{n+1} \\
& =f_{n+1}\left(f_{n}+f_{n+1}\right) \\
& =f_{n+1} f_{n+2}
\end{aligned}
$$

5. Prove that $f_{1}+f_{3}+\cdots+f_{2 n-1}=f_{2 n}$ for $n \geq 1$.

Base case: $f_{1}=1=f_{2}$ when $n=1$.
Inductive step: if the formula holds for n, then

$$
\begin{aligned}
\left(f_{1}+f_{3}+\cdots+f_{2 n-1}\right)+f_{2 n+1} & =f_{2 n}+f_{2 n+1} \\
& =f_{2 n+2}
\end{aligned}
$$

6. $(\boldsymbol{\star})$ Prove that $\operatorname{gcd}\left(f_{m}, f_{n}\right)=f_{\operatorname{gcd}(m, n)}$ for any $m, n \in \mathbb{N}$.

Good luck!

Recursive Games

You and a friend are playing a game: there is a pile of stones. You take turns removing stones from the pile-during your turn, you may remove 1,2 , or 3 stones. Whoever removes the last stone wins.

1. Prove that the second player has a winning strategy if the pile begins with 8 stones.

If player 1 takes n stones, then player 2 should take $(4-n)$ stones, leaving 4 stones in the pile. Player 1 then has to take at least 1 stone, and player 2 can take the rest.
2. Who has a winning strategy if the pile begins with 15 stones? 16 stones?

If the pile starts with 15 stones then player 1 can win by taking 3 stones to start. If the pile starts with 16 stones then player 2 can win.
3. Suppose that the pile has n stones, and you may choose whether to go first or second. How should you decide?
If the pile begins with $4 m$ stones for $n \geq 1$, player 2 has the winning strategy.
Proof: For the base case $m=1$ it is easy to see that player 2 can win.
If player 2 can win a game with $4 m$ stones and the game begins with $4(m+1)=4 m+4$ stones, then when player 1 takes k stones player 2 should take $(4-k)$ stones, leaving the pile with $4 m$. By the inductive hypothesis, player 2 can win this game.
If the pile begins with $4 m+1,4 m+2$, or $4 m+3$ stones then player 1 can win by choosing 1,2 or 3 stones (respectively) and leaving the pile with 4 m . Player 1 can then use the same winning strategy that player 2 would have used in the previous scenario.

