
Chapter 5.1-5.3: More Induction and Recursion
Monday, October 5

Warmup

1. Prove: If a0 = 1 and an+1 ≥ an for all n ∈ N, then an > 0 for all n ∈ N.

Base case: a0 > 0. Check!

Inductive step: If an > 0 then an + 1 ≥ an > 0, so an+1 > 0. All done!

2. Define: A(n) =

{
1 n = 0

n ·A(n− 1) n ≥ 1
. What is A(5)? What is the function A?

A(5) = 120. A(n) = n!.

3. Define: B(n) =

{
0 n = 0

n + B(n− 1) n ≥ 1
. What is B(5)? What is the function B?

B(5) = 15. B(n) =
∑n

i=1 i = n(n+1)
2 .

4. Define: C(x, y) =


x y = 0

C(y, x) y > x

C(x− y, y) x ≥ y > 0

. What is C(22, 6)? What is the function C?

C(22, 6) = C(16, 6) = C(10, 6) = C(4, 6) = C(6, 4) = C(2, 4) = C(4, 2) = C(0, 2) = C(2, 0) = 2. C is
the greatest common divisor function.

Recursive Structures

Find ways to define the following expressions recursively over the variable n (for n ∈ N):

1.
∑n

i=1 ai = an +
∑n−1

i=1 ai, and simply a1 if n = 1.

2. xn: 1 if n = 0, x · xn−1 otherwise.

3. n!: 0 if n = 0, n · (n− 1)! otherwise.

4.
⋃n

i=1 Ai: A1 if n = 1, An ∪
⋃n−1

i=1 Ai otherwise.

5. The song “n Bottles of Beer on the Wall”: nothing if n = 0, one verse followed by “(n− 1) Bottles of
Beer on the Wall” otherwise.

6. max(a1, a2, . . . , an) = max(an,max(a1, . . . , an−1)) if n > 2, and max(a1, a2) if n = 2.

7. A function that takes a finite list of integers and returns 1 if all of the integers are positive and 0
otherwise.

f(a1, . . . , an) =


0 an ≤ 0

1 List is empty

f(a1, . . . , an−1) an > 0

.

8. A function that tells you whether a given word is a palindrome.

f(”abc . . . c′b′a′”) = T if the word has 0 letters or 1 letter, F if a 6= a′, and f(”bc . . . c′b′”) if a = a′.
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From Two to Many

1. Given that ab = ba, prove that anb = ban for all n ≥ 1.

Base case: ab = ba is given.

Inductive step: If an−1b = ban−1 then anb = a · an−1b = a · ban−1 = b · a · an−1 = ban. Done.

2. Given: if a ≡ b (mod m) and c ≡ d (mod m) then a + c ≡ b + d (mod m). Prove: if ai ≡ bi (mod m)
for i = 1, 2, . . . , n, then

∑n
i=1 ai ≡

∑n
i=1 bi (mod m).

Base case: When n = 2 the formula a + c ≡ b + d (mod m) was already given.

Inductive step: Supposing the formula works for n, we get

n+1∑
i=1

ai = (

n∑
i=1

ai) + an+1

≡
n∑

i=1

bi + bn+1

≡
n+1∑
i=1

bi

3. Prove:

n⋃
i=1

Ai =

n⋂
i=1

Ai.

Base case: When n = 2 A ∪B = A ∩B is given by one of DeMorgan’s Laws.

Inductive step: Suppose the formula works for n. Then

n+1⋃
i=1

Ai =

n⋃
i=1

Ai ∪An+1

=

n⋃
i=1

Ai ∩An+1

=

n⋂
i=1

Ai ∩An+1

=
n+1⋂
i=1

Ai

4. Given: (fg)′ = f ′g + fg′. Prove: (fgh)′ = f ′gh + fg′h + fgh′. Also prove: (
∏n

i=1 fi)
′

=
∑n

i=1 f
′
i ·∏

j 6=i fj .

Base case: when n = 2 the formula is given.
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Inductive step: Suppose the formula works for n. Then(
n+1∏
i=1

fi

)′
=

(
n∏

i=1

fi · fn+1

)′

=

(
n+1∏
i=1

fi

)′
fn+1 +

(
n+1∏
i=1

fi

)
f ′n+1

=

n∑
i=1

f ′i ·
∏
j 6=i

fj + f ′n+1

n∏
j=1

fj

=

n+1∑
i=1

f ′i ·
∏
j 6=i

fj

5. Given: if A and B are countable then A×B is countable. Prove: Zn is countable for any n ≥ 1.

Base case: When n = 1 we know that Z is countable. When n = 2 we know that Z× Z is countable.

Inductive step: If Zn−1 is countable then Zn = Zn−1 ×Z, which is countable because it is the product
of two countable sets.
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