Chapter 5.1-5.3: More Induction and Recursion
 Monday, October 5

Warmup

1. Prove: If $a_{0}=1$ and $a_{n+1} \geq a_{n}$ for all $n \in \mathbb{N}$, then $a_{n}>0$ for all $n \in \mathbb{N}$.

Base case: $a_{0}>0$. Check!
Inductive step: If $a_{n}>0$ then $a n+1 \geq a_{n}>0$, so $a_{n+1}>0$. All done!
2. Define: $A(n)=\left\{\begin{array}{ll}1 & n=0 \\ n \cdot A(n-1) & n \geq 1\end{array}\right.$. What is $A(5)$? What is the function A ?
$A(5)=120 . \quad A(n)=n!$.
3. Define: $B(n)=\left\{\begin{array}{ll}0 & n=0 \\ n+B(n-1) & n \geq 1\end{array}\right.$. What is $B(5)$? What is the function B ?
$B(5)=15 . B(n)=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
4. Define: $C(x, y)=\left\{\begin{array}{ll}x & y=0 \\ C(y, x) & y>x \\ C(x-y, y) & x \geq y>0\end{array}\right.$. What is $C(22,6)$? What is the function C ?
$C(22,6)=C(16,6)=C(10,6)=C(4,6)=C(6,4)=C(2,4)=C(4,2)=C(0,2)=C(2,0)=2 . C$ is the greatest common divisor function.

Recursive Structures

Find ways to define the following expressions recursively over the variable n (for $n \in \mathbb{N}$):

1. $\sum_{i=1}^{n} a_{i}=a_{n}+\sum_{i=1}^{n-1} a_{i}$, and simply a_{1} if $n=1$.
2. $x^{n}: 1$ if $n=0, x \cdot x^{n-1}$ otherwise.
3. $n!: 0$ if $n=0, n \cdot(n-1)$! otherwise.
4. $\bigcup_{i=1}^{n} A_{i}: A_{1}$ if $n=1, A_{n} \cup \bigcup_{i=1}^{n-1} A_{i}$ otherwise.

5 . The song " n Bottles of Beer on the Wall": nothing if $n=0$, one verse followed by " $(n-1)$ Bottles of Beer on the Wall" otherwise.
6. $\max \left(a_{1}, a_{2}, \ldots, a_{n}\right)=\max \left(a_{n}, \max \left(a_{1}, \ldots, a_{n-1}\right)\right)$ if $n>2$, and $\max \left(a_{1}, a_{2}\right)$ if $n=2$.
7. A function that takes a finite list of integers and returns 1 if all of the integers are positive and 0 otherwise.

$$
f\left(a_{1}, \ldots, a_{n}\right)= \begin{cases}0 & a_{n} \leq 0 \\ 1 & \text { List is empty } \\ f\left(a_{1}, \ldots, a_{n-1}\right) & a_{n}>0\end{cases}
$$

8. A function that tells you whether a given word is a palindrome.
$f\left(" a b c \ldots c^{\prime} b^{\prime} a^{\prime \prime \prime}\right)=\mathbf{T}$ if the word has 0 letters or 1 letter, \mathbf{F} if $a \neq a^{\prime}$, and $f\left(" b c \ldots c^{\prime} b^{\prime \prime}\right)$ if $a=a^{\prime}$.

From Two to Many

1. Given that $a b=b a$, prove that $a^{n} b=b a^{n}$ for all $n \geq 1$.

Base case: $a b=b a$ is given.
Inductive step: If $a^{n-1} b=b a^{n-1}$ then $a^{n} b=a \cdot a^{n-1} b=a \cdot b a^{n-1}=b \cdot a \cdot a^{n-1}=b a^{n}$. Done.
2. Given: if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then $a+c \equiv b+d(\bmod m)$. Prove: if $a_{i} \equiv b_{i}(\bmod m)$ for $i=1,2, \ldots, n$, then $\sum_{i=1}^{n} a_{i} \equiv \sum_{i=1}^{n} b_{i}(\bmod m)$.
Base case: When $n=2$ the formula $a+c \equiv b+d(\bmod m)$ was already given.
Inductive step: Supposing the formula works for n , we get

$$
\begin{aligned}
\sum_{i=1}^{n+1} a_{i} & =\left(\sum_{i=1}^{n} a_{i}\right)+a_{n+1} \\
& \equiv \sum_{i=1}^{n} b_{i}+b_{n+1} \\
& \equiv \sum_{i=1}^{n+1} b_{i}
\end{aligned}
$$

3. Prove: $\overline{\bigcup_{i=1}^{n} A_{i}}=\bigcap_{i=1}^{n} \overline{A_{i}}$.

Base case: When $n=2 \overline{A \cup B}=\bar{A} \cap \bar{B}$ is given by one of DeMorgan's Laws.
Inductive step: Suppose the formula works for n. Then

$$
\begin{aligned}
\overline{\bigcup_{i=1}^{n+1} A_{i}} & =\overline{\bigcup_{i=1}^{n} A_{i} \cup A_{n+1}} \\
& =\bigcup_{i=1}^{n} A_{i} \cap \overline{A_{n+1}} \\
& =\bigcap_{i=1}^{n} \overline{A_{i}} \cap \overline{A_{n+1}} \\
& =\bigcap_{i=1}^{n+1} \overline{A_{i}}
\end{aligned}
$$

4. Given: $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$. Prove: $(f g h)^{\prime}=f^{\prime} g h+f g^{\prime} h+f g h^{\prime}$. Also prove: $\left(\prod_{i=1}^{n} f_{i}\right)^{\prime}=\sum_{i=1}^{n} f_{i}^{\prime}$. $\prod_{j \neq i} f_{j}$.
Base case: when $n=2$ the formula is given.

Inductive step: Suppose the formula works for n. Then

$$
\begin{aligned}
\left(\prod_{i=1}^{n+1} f_{i}\right)^{\prime} & =\left(\prod_{i=1}^{n} f_{i} \cdot f_{n+1}\right)^{\prime} \\
& =\left(\prod_{i=1}^{n+1} f_{i}\right)^{\prime} f_{n+1}+\left(\prod_{i=1}^{n+1} f_{i}\right) f_{n+1}^{\prime} \\
& =\sum_{i=1}^{n} f_{i}^{\prime} \cdot \prod_{j \neq i} f_{j}+f_{n+1}^{\prime} \prod_{j=1}^{n} f_{j} \\
& =\sum_{i=1}^{n+1} f_{i}^{\prime} \cdot \prod_{j \neq i} f_{j}
\end{aligned}
$$

5. Given: if A and B are countable then $A \times B$ is countable. Prove: \mathbb{Z}^{n} is countable for any $n \geq 1$. Base case: When $n=1$ we know that \mathbb{Z} is countable. When $n=2$ we know that $\mathbb{Z} \times \mathbb{Z}$ is countable. Inductive step: If \mathbb{Z}^{n-1} is countable then $\mathbb{Z}^{n}=\mathbb{Z}^{n-1} \times \mathbb{Z}$, which is countable because it is the product of two countable sets.
