Chapter 5.1: Induction and Recursion
 Wednesday, September 30

Warmup

Define: A curious number is a number that is curious. Suppose we know two things about curious numbers:

1. If any integer n is a curious number, then $n+2$ is a curious number.
2. 7 is a curious number.

Which numbers must also be curious?

1. 5
2. 9
3. 10
4. 15
5. 1341
6. 2808
7. 39523092357
8. n
9. ∞

Now suppose that 10 is not a curious number. Which number must not be curious?

There is a machine that makes widgets all day. It has one problem - if a widget it makes is defective, then the next widget it makes will also be defective. What can you say about the machine?

Induction

1. For what integers is $2^{n} \geq n^{2}$ true? Prove it.
2. (Calculus) Suppose we know that $\frac{d}{d x} x=1$ and that for any functions f and $\mathrm{g},(f g)^{\prime}=f^{\prime} g+f g^{\prime}$. Prove that $\frac{d}{d x} x^{n}=n x^{n-1}$ for all $n \geq 1$.
3. Prove that $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for $n \geq 0$.
4. Prove that $1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!=(n+1)!-1$ for $n \geq 1$.
5. Find a closed form for $\sum_{k=1}^{n}(-1)^{k} k^{2}$ and prove that it is correct.
