Chapter 5.1: Induction and Recursion
 Wednesday, September 30

Warmup

Define: A curious number is a number that is curious. Suppose we know two things about curious numbers:

1. If any integer n is a curious number, then $n+2$ is a curious number.
2. 7 is a curious number.

Which numbers must also be curious?

1. 5
2. 9
3. 10
4. 15
5. 1341
6. 2808
7. 39523092357
8. n
9. ∞

All odd numbers greater than 7 must be curious. No others are necessarily curious.

Now suppose that 10 is not a curious number. Which number must not be curious?
No even numbers less than or equal to 10 can be curious.

There is a machine that makes widgets all day. It has one problem - if a widget it makes is defective, then the next widget it makes will also be defective. What can you say about the machine?
If the machine ever makes a defective widget, it will only make defective widgets from that point on.

Induction

1. For what integers is $2^{n} \geq n^{2}$ true? Prove it.
$2^{n} \geq n^{2}$ for $n=0,1,2$, and $n \geq 4$.
Base case: $2^{4}=16=4^{2}$.
Inductive step. Suppose that $n \geq 4$ and $2^{n} \geq n^{2}$. Then

$$
\begin{aligned}
2^{n+1} & =2 \cdot 2^{n} \\
& \geq n^{2}+n^{2} \\
& \geq n^{2}+4 n \\
& \geq n^{2}+2 n+2 n \\
& \geq n^{2}+2 n+1 \\
& =(n+1)^{2}
\end{aligned}
$$

2. (Calculus) Suppose we know that $\frac{d}{d x} x=1$ and that for any functions f and $\mathrm{g},(f g)^{\prime}=f^{\prime} g+f g^{\prime}$. Prove that $\frac{d}{d x} x^{n}=n x^{n-1}$ for all $n \geq 1$.
Base case: when $n=1, \frac{d}{d x} x^{1}=1=1 \cdot x^{0}$.
Inductive step: If $\frac{d}{d x} x^{n}=n x^{n-1}$, then

$$
\begin{aligned}
\frac{d}{d x} x^{n+1} & =\left(x \cdot x^{n}\right)^{\prime} \\
& =x^{\prime} \cdot x^{n}+\left(x^{n}\right)^{\prime} \cdot x \\
& =x^{n}+n x^{n-1} \cdot x \\
& =(n+1) x^{n}
\end{aligned}
$$

3. Prove that $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for $n \geq 0$.

Base case: it works for $n=0$ since $0=0(0+1)(0+2) / 6$.
Inductive step. Suppose that the formula works for n. Then

$$
\begin{aligned}
\left(1^{2}+2^{2}+\cdots+n^{2}\right)+(n+1)^{2} & =n(n+1)(2 n+1) / 6+n^{2}+2 n+1 \\
& =\frac{2 n^{3}+3 n^{2}+2 n+6 n^{2}+12 n+6}{6} \\
& =\frac{2 n^{3}+9 n^{2}+14 n+6}{6} \\
& =\frac{(n+1)(n+2)(2 n+3)}{6}
\end{aligned}
$$

4. Prove that $1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!=(n+1)!-1$ for $n \geq 1$.

Base case: it works for $n=1$.
Inductive step: suppose it works for n. Then

$$
\begin{aligned}
(1 \cdot 1!+2 \cdot 2!+\cdots+n \cdot n!)+(n+1) \cdot(n+1)! & =(n+1)!-1+[(n+2) \cdot(n+1)!-(n+1)!] \\
& =(n+2)!-1
\end{aligned}
$$

5. Find a closed form for $\sum_{k=1}^{n}(-1)^{k} k^{2}$ and prove that it is correct.

The first few terms are $-1,3,-6,10,-15, \ldots$, so guess that the formula is $(-1)^{n} n(n+1) / 2$.
Base case: The formula works for $n=1$.
Inductive step: suppose that it works for n. Then

$$
\begin{aligned}
\sum_{k=1}^{n+1}(-1)^{k} k^{2} & =\sum_{k=1}^{n}(-1)^{k} k^{2}+(-1)^{n+1}(n+1)^{2} \\
& =(-1)^{n} n(n+1) / 2+(-1)^{n+1}\left(n^{2}+2 n+1\right) \\
& =(-1)^{n+1} \frac{2 n^{2}+4 n+2-n^{2}-n}{2} \\
& =(-1)^{n+1} \frac{n^{2}+3 n+2}{2} \\
& =(-1)^{n+1} \frac{(n+1)(n+2)}{2}
\end{aligned}
$$

