Necessary and Sufficient Conditions
 Monday, September 28

Key Topics

- p is sufficient for q if $p \Rightarrow q$.
- p is necessary for q if $\neg p \Rightarrow \neg q$ (or, $q \Rightarrow p$).
- p is necessary and sufficient for q if $p \Leftrightarrow q$.

Warmup

Theorem 0.1 (Primality Test) If p is a prime number and $p>2$ then $2^{p-1} \equiv 1(\bmod p)$.

1. If $2^{128} \equiv 4(\bmod 129)$, what can you conclude?
2. If $2^{560} \equiv 1(\bmod 561)$, what can you conclude?
3. If n is a number such that $2^{n-1} \equiv 0(\bmod n)$, what can you conclude?
4. How can you tell for certain that a number is prime?

Theorem 0.2 (Raven Theorem) All ravens are black.
Suppose we want to find a counterexample to the statement "All birds are black." What information does Theorem 0.2 give us about such a counterexample?

Let x be a real number, and say we want to ensure that $x^{2}+1>5$. Find conditions on x that are...

1. Necessary and sufficient.
2. Necessary, but not sufficient.
3. Sufficient, but not necessary.
4. Neither necessary nor sufficient.

Hypothesis Testing

Theorem 0.3 (Bezout's Theorem) If $\operatorname{gcd}(a, b)=1$ then there exist x and y such that $a x+b y=1$.
Theorem 0.4 (The Prime Property) If p is prime, then p has the following property: if $p \mid a b$ then $p \mid a$ or $p \mid b$.

1. Suppose we have two integers a and b and want to find x and y such that $a x+b y=1$. We know that the condition $\operatorname{gcd}(a, b)=1$ is sufficient, but is it necessary?
2. Suppose we want to find x and y such that $a x+b y=7$. Is the condition $\operatorname{gcd}(a, b)=1$ necessary? Is it sufficient?
3. Consider the statement "If $\operatorname{gcd}(a, b) \leq 3$ then there exist x and y such that $a x+b y=1$." What must a counterexample to this statement look like?
4. Is it necessary that p be prime in order for it to have the prime property?
5. Prove or find a counterexample: If p is prime and $a b \equiv 0(\bmod p)$ then $a \equiv 0(\bmod p)$ or $b \equiv 0$ $(\bmod p)$.
6. Prove or find a counterexample: If $n \geq 2$ and $a b \equiv 0(\bmod n)$ then $a \equiv 0(\bmod n)$ or $b \equiv 0(\bmod n)$.
