Necessary and Sufficient Conditions Monday, September 28

Key Topics

- p is sufficient for q if $p \Rightarrow q$.
- p is necessary for q if $\neg p \Rightarrow \neg q$ (or, $q \Rightarrow p$).
- p is necessary and sufficient for q if $p \Leftrightarrow q$.

Warmup

Theorem 0.1 (Primality Test) If p is a prime number and p > 2 then $2^{p-1} \equiv 1 \pmod{p}$.

- 1. If $2^{128} \equiv 4 \pmod{129}$, what can you conclude?
- 2. If $2^{560} \equiv 1 \pmod{561}$, what can you conclude?
- 3. If n is a number such that $2^{n-1} \equiv 0 \pmod{n}$, what can you conclude?
- 4. How can you tell for certain that a number is prime?

Theorem 0.2 (Raven Theorem) All ravens are black.

Suppose we want to find a counterexample to the statement "All birds are black." What information does Theorem 0.2 give us about such a counterexample?

Let x be a real number, and say we want to ensure that $x^2 + 1 > 5$. Find conditions on x that are...

- 1. Necessary and sufficient.
- 2. Necessary, but not sufficient.
- 3. Sufficient, but not necessary.
- 4. Neither necessary nor sufficient.

Hypothesis Testing

Theorem 0.3 (Bezout's Theorem) If gcd(a,b) = 1 then there exist x and y such that ax + by = 1.

Theorem 0.4 (The Prime Property) If p is prime, then p has the following property: if p|ab then p|a or p|b.

- 1. Suppose we have two integers a and b and want to find x and y such that ax + by = 1. We know that the condition gcd(a, b) = 1 is sufficient, but is it necessary?
- 2. Suppose we want to find x and y such that ax + by = 7. Is the condition gcd(a, b) = 1 necessary? Is it sufficient?
- 3. Consider the statement "If $gcd(a, b) \leq 3$ then there exist x and y such that ax + by = 1." What must a counterexample to this statement look like?
- 4. Is it necessary that p be prime in order for it to have the prime property?
- 5. Prove or find a counterexample: If p is prime and $ab \equiv 0 \pmod{p}$ then $a \equiv 0 \pmod{p}$ or $b \equiv 0 \pmod{p}$.
- 6. Prove or find a counterexample: If $n \ge 2$ and $ab \equiv 0 \pmod{n}$ then $a \equiv 0 \pmod{n}$ or $b \equiv 0 \pmod{n}$.