Key Topics

• p is sufficient for q if $p \Rightarrow q$.
• p is necessary for q if $\neg p \Rightarrow \neg q$ (or, $q \Rightarrow p$).
• p is necessary and sufficient for q if $p \Leftrightarrow q$.

Warmup

Theorem 0.1 (Primality Test) If p is a prime number and $p > 2$ then $2^{p-1} \equiv 1 \pmod{p}$.

1. If $2^{128} \equiv 4 \pmod{129}$, what can you conclude? **129 is not prime.**
2. If $2^{560} \equiv 1 \pmod{561}$, what can you conclude? **Nothing.**
3. If n is a number such that $2^{n-1} \equiv 0 \pmod{n}$, what can you conclude? **Either $n \leq 2$ or n is not prime.**
4. How can you tell for certain that a number is prime? **The simplest way is to try dividing n by every prime number less than its square root. There are more efficient tests, but they are beyond the scope of this course.**

Theorem 0.2 (Raven Theorem) All ravens are black.

Suppose we want to find a counterexample to the statement “All birds are black.” What information does Theorem 0.2 give us about such a counterexample? **The counterexample must be a bird that is not a raven.**

Let x be a real number, and say we want to ensure that $x^2 + 1 > 5$. Find conditions on x that are...

1. Necessary and sufficient. $|x| > 2$
2. Necessary, but not sufficient. $x \neq 0$
3. Sufficient, but not necessary. $x > 10$
4. Neither necessary nor sufficient. $x > 0$
Hypothesis Testing

Theorem 0.3 (Bezout’s Theorem) If \(\gcd(a, b) = 1 \) then there exist \(x \) and \(y \) such that \(ax + by = 1 \).

Theorem 0.4 (The Prime Property) If \(p \) is prime, then \(p \) has the following property: if \(p | ab \) then \(p | a \) or \(p | b \).

1. Suppose we have two integers \(a \) and \(b \) and want to find \(x \) and \(y \) such that \(ax + by = 1 \). We know that the condition \(\gcd(a, b) = 1 \) is sufficient, but is it necessary?
 Yes: suppose that \(\gcd(a, b) = d > 1 \), then \(ax + by = dnx + dmy = d(nx + my) \), which is divisible by \(d \) and therefore not equal to 1.

2. Suppose we want to find \(x \) and \(y \) such that \(ax + by = 7 \). Is the condition \(\gcd(a, b) = 1 \) necessary? Is it sufficient?
 It is sufficient, since if \(ax + by = 1 \) then \((7x)a + (7y)b = 7 \). It is not necessary... take \(a = 7, b = 0 \) as a counterexample.

3. Consider the statement “If \(\gcd(a, b) \leq 3 \) then there exist \(x \) and \(y \) such that \(ax + by = 1 \).” What must a counterexample to this statement look like?
 Must have \(\gcd(a, b) = 2 \) or \(3 \).

4. Is it necessary that \(p \) be prime in order for it to have the prime property?
 No. \(p \) can also be 0 or 1.

5. Prove or find a counterexample: If \(p \) is prime and \(ab \equiv 0 \pmod{p} \) then \(a \equiv 0 \pmod{p} \) or \(b \equiv 0 \pmod{p} \).
 True, since when put in divisibility notation this is the same as the Prime property.

6. Prove or find a counterexample: If \(n \geq 2 \) and \(ab \equiv 0 \pmod{n} \) then \(a \equiv 0 \pmod{n} \) or \(b \equiv 0 \pmod{n} \).
 False. \(n = 6, a = 3, b = 2 \) is a counterexample.