Proof Review

Monday, September 21
Theorem 0.1 Theorem 1 If $\mathcal{P}(A)=\mathcal{P}(B)$ then $A=B$.
Proof $1 \mathcal{P}(A)$ and $\mathcal{P}(B)$ are the sets of all subsets of A an B. So for $\mathcal{P}(A)$ and $\mathcal{P}(B)$ to have all of the same subsets of elements, the sets A and B need to have all the same elements. Therefore, $A=B$.

Proof 2 Since $\mathcal{P}(A)$ is the set of all subsets of A and since $A \subset A$, we know that $A \in \mathcal{P}(A)$. But $\mathcal{P}(A)=\mathcal{P}(B)$, so this means that $A \in \mathcal{P}(B)$, and so $A=B$.

Proof $3 x \in A \Leftrightarrow\{x\} \in \mathcal{P}(A) \Leftrightarrow\{x\} \in \mathcal{P}(B) \Leftrightarrow x \in B$.

Theorem 0.2 Theorem 2 If $A \cup B=U$ and $A \subset C$ then $\bar{C} \subset B$.
Proof 1 The given information (in propositional logic) is that $a \vee b \equiv \mathbf{T}$ and $a \Rightarrow c \equiv \mathbf{T}$, so $\neg a \vee c \equiv \mathbf{T}$. Therefore

$$
\begin{aligned}
\neg c \Rightarrow b & \equiv c \vee b \\
& \equiv(a \wedge \neg a) \vee b \vee c \\
& \equiv((a \vee b) \wedge(\neg a \vee b)) \vee c \\
& \equiv \neg a \vee b \vee c \\
& \equiv b \vee(\neg a \vee c) \\
& \equiv \mathbf{T}
\end{aligned}
$$

Therefore, $\bar{C} \subset B$.
Proof 2 Since $A \cup B=U$ we know that if an element is not in A then it is in B, so $\bar{A}=B$. The premise $A \subset C$ is equivalent to $\bar{C} \subset \bar{A}$, and since $\bar{A}=B$ this means that $\bar{C} \subset B$.

Proof 3 Suppose $x \in \bar{C}$. Then since $A \subset C, x \notin A$. But $A \cup B=U$ means that $x \in A$ or $x \in B$, and since $x \notin A$ it follows that $x \in B$. Therefore, if $x \in \bar{C}$ then $x \in B$, meaning that $\bar{C} \subset B$.

Theorem 0.3 (Theorem 3) If $a \mid c$ and $b \mid c$ then $c=0$ or $a=b$.
Proof Since $a \mid c$ there is some $k \in \mathbb{Z}$ such that $a k=c$. Since $b \mid c$ there is also some $k \in \mathbb{Z}$ such that $b k=c$. So we can write $a k=c=b k$, meaning that $a k=b k$. If $k \neq 0$ then we can divide by k to get $a=b$.

Theorem 0.4 (Theorem 4) If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$ then $a \mid c$.
Proof 1 By Bezout's Theorem there exist s and t such that $a s+b t=1$. So $a s c+b t c=c$, but since $a \mid b c$ we can say $b c=a k$ for some k. The previous equation then becomes $c=a s c+a k t=a(s c+k t)$, so $a \mid c$.

Proof 2 By Bezout's Theorem there exist s and t such that $a s+b t=1$. This means that there exists t such that $b t \equiv 1(\bmod a)$. Suppose $a \mid b c$, so $b c \equiv 0(\bmod a)$. Then $t b c \equiv t \cdot 0(\bmod a)$, which means that $c \equiv 1 \cdot c \equiv 0(\bmod a)$. Therefore $a \mid c$.

Proof 3 Break a, b, and c into products of prime factors. Since $a \mid b c$ we know that the prime factors of $b c$ contain all the prime factors of a, but since $\operatorname{gcd}(a, b)=1$ we know that none of these factors containing a can come from b. They must therefore all come form c, meaning that $a \mid c$.

Theorem 0.5 (The Prime Property) If p is prime, and $p \mid a b$, then $p \mid a$ or $p \mid b$.
Proof : Prove it.

