Proof Review

Monday, September 21

Theorem 0.1 Theorem 1 If $\mathcal{P}(A) = \mathcal{P}(B)$ then A = B.

- **Proof 1** $\mathcal{P}(A)$ and $\mathcal{P}(B)$ are the sets of all subsets of A an B. So for $\mathcal{P}(A)$ and $\mathcal{P}(B)$ to have all of the same subsets of elements, the sets A and B need to have all the same elements. Therefore, A = B.
- **Proof 2** Since $\mathcal{P}(A)$ is the set of all subsets of A and since $A \subset A$, we know that $A \in \mathcal{P}(A)$. But $\mathcal{P}(A) = \mathcal{P}(B)$, so this means that $A \in \mathcal{P}(B)$, and so A = B.

Proof 3 $x \in A \Leftrightarrow \{x\} \in \mathcal{P}(A) \Leftrightarrow \{x\} \in \mathcal{P}(B) \Leftrightarrow x \in B.$

Theorem 0.2 Theorem 2 If $A \cup B = U$ and $A \subset C$ then $\overline{C} \subset B$.

Proof 1 The given information (in propositional logic) is that $a \lor b \equiv \mathbf{T}$ and $a \Rightarrow c \equiv \mathbf{T}$, so $\neg a \lor c \equiv \mathbf{T}$. Therefore

$$\neg c \Rightarrow b \equiv c \lor b$$

$$\equiv (a \land \neg a) \lor b \lor c$$

$$\equiv ((a \lor b) \land (\neg a \lor b)) \lor c$$

$$\equiv \neg a \lor b \lor c$$

$$\equiv b \lor (\neg a \lor c)$$

$$\equiv \mathbf{T}$$

Therefore, $\overline{C} \subset B$.

- **Proof 2** Since $A \cup B = U$ we know that if an element is not in A then it is in B, so $\overline{A} = B$. The premise $A \subset C$ is equivalent to $\overline{C} \subset \overline{A}$, and since $\overline{A} = B$ this means that $\overline{C} \subset B$.
- **Proof 3** Suppose $x \in \overline{C}$. Then since $A \subset C$, $x \notin A$. But $A \cup B = U$ means that $x \in A$ or $x \in B$, and since $x \notin A$ it follows that $x \in B$. Therefore, if $x \in \overline{C}$ then $x \in B$, meaning that $\overline{C} \subset B$.

Theorem 0.3 (Theorem 3) If a|c and b|c then c = 0 or a = b.

Proof Since a|c there is some $k \in \mathbb{Z}$ such that ak = c. Since b|c there is also some $k \in \mathbb{Z}$ such that bk = c. So we can write ak = c = bk, meaning that ak = bk. If $k \neq 0$ then we can divide by k to get a = b.

Theorem 0.4 (Theorem 4) If a|bc and gcd(a, b) = 1 then a|c.

- **Proof 1** By Bezout's Theorem there exist s and t such that as + bt = 1. So asc + btc = c, but since a|bc we can say bc = ak for some k. The previous equation then becomes c = asc + akt = a(sc + kt), so a|c.
- **Proof 2** By Bezout's Theorem there exist s and t such that as + bt = 1. This means that there exists t such that $bt \equiv 1 \pmod{a}$. Suppose a|bc, so $bc \equiv 0 \pmod{a}$. Then $tbc \equiv t \cdot 0 \pmod{a}$, which means that $c \equiv 1 \cdot c \equiv 0 \pmod{a}$. Therefore a|c.
- **Proof 3** Break a, b, and c into products of prime factors. Since a|bc we know that the prime factors of bc contain all the prime factors of a, but since gcd(a, b) = 1 we know that none of these factors containing a can come from b. They must therefore all come form c, meaning that a|c.

Theorem 0.5 (The Prime Property) If p is prime, and p|ab, then p|a or p|b.

Proof : Prove it.