Chapters 4.1-4.2: Number Theory
 Wednesday, September 16

Key Notes

- $a \mid b=a$ divides $b=a$ is a divisor of $b=b$ is divisible by $a=(\exists k \in \mathbb{Z})(a k=b)$
- $a \equiv b(\bmod m)$ if and only if $m \mid(b-a)$.
- If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then $a+c \equiv b+d(\bmod m)$ and $a c \equiv b d(\bmod m)$.
- If $a \mid b$ and $a \mid c$ then $a \mid(m b+n c)$ for any $m, n \in \mathbb{Z}$.

Warmup

1. Today is Tuesday. What day will it be 1000 days from now?
2. You are on a circular track 400 meters long. You run 3800 meters clockwise and 2200 meters counterclockwise. How far are you from where you started?
3. Observations: If $30 \mid n$ then $10 \mid n$. If $25 \mid n$ then $5 \mid n$. If $18 \mid n$ then $9 \mid n$. Find a general rule.

Modular Arithmetic

Evaluate the following:

1. $44(\bmod 3)$
2. $171(\bmod 12)$
3. $-26(\bmod 5)$
4. $199^{2}(\bmod 5)$
5. $(2301(\bmod 3))^{2}(\bmod 5)$
6. $23^{88}(\bmod 2)$
7. $2^{100}(\bmod 10)$
8. $2737 \cdot 8184(\bmod 9)$
9. $2^{64}(\bmod 13)$
10. $88^{5}(\bmod 90)$
11. $97 \cdot 85(\bmod 100)$
12. $155 \cdot 822(\bmod 10)$

Divisibility

True or false? If true, prove. If false, find a counterexample.

1. $1 \mid a$ for any a.
2. $0 \mid a$ for any a.
3. $a \mid 0$ for any a.
4. If $a \mid b$ and $b \mid c$ then $a \mid c$.
5. If $a \mid b$ and $b \mid a$ then $a=b$.
6. If $a \mid c$ and $b \mid c$ then either $a \mid b$ or $b \mid a$.
7. Suppose $a \mid b$. Then $a \mid(b+c)$ if and only if $a \mid c$.
8. If $2 \mid n$ and $4 \mid n$ then $8 \mid n$.

Divisibility Tests

1. Prove that a number is divisible by 5 if and only if its last digit is 0 or 5 .
2. Prove that a number is divisible by 4 if and only if its last two digits make a number divisible by 4 .
3. Prove that for any integer n, either $n^{2} \equiv 0(\bmod 4)$ or $n^{2} \equiv 1(\bmod 4)$.
4. Prove that 98765434 is not a perfect square.
5. Prove that 111111 cannot be written as the sum of any two square numbers (what are the possibilities for $\left.a^{2}+b^{2}(\bmod 4) ?\right)$
