Chapters 2.2-2.5: Sets and Functions Monday, September 14

Key Notes

- One way to prove A = B: prove $A \subset B$ and $B \subset A$.
- $f: A \to B$ is 1-1 if $f(a) = f(b) \Rightarrow a = b$ for all $a, b \in A$.
- $f: A \to B$ is 1-1 if $a \neq b \Rightarrow f(a) \neq f(b)$ for all $a, b \in A$.
- $f: A \to B$ is onto if $(\forall b \in B)(\exists a \in A)(f(a) = b)$.

Warmup

- 1. What rule in propositional logic does $\overline{A \cup B} = \overline{A} \cap \overline{B}$ correspond to?
- 2. How can you say "f is not onto" in quantifier notation? How do you prove that a function is not onto?

Set Proofs 1

Consider the statement "If $A \subseteq B$ then $A \cup C \subseteq B \cup C$."

- 1. Find an analogous statement in propositional logic.
- 2. Draw a Venn Diagram that illustrates the proof.
- 3. Make a given-goal diagram for the proof.
- 4. Prove the statement. Prove or disprove the converse.

Do the same with the statement "If $A \subset B$ then $B \cup \overline{A} = U$."

Set Proofs 2

Prove the following statements using a series of equivalences.

- 1. $A (A C) \subseteq C$
- 2. $\overline{A \cup B} \cap B = \emptyset$
- 3. $B = (A \cap B) \cup (\overline{A} \cap B)$

Functions

- 1. Prove that f(x) = 3x is onto if f is from \mathbb{R} to \mathbb{R} but not if f is from \mathbb{Z} to \mathbb{Z} .
- 2. Prove that f(x) = 3x is 1-1 in either of the above cases.
- 3. Say that a function is *increasing* if a > b implies that f(a) > f(b) for all a, b in the domain of f. Prove that increasing functions are 1-1.
- 4. Prove that the sum of two increasing functions is increasing.
- 5. Prove or disprove: the sum of two 1-1 functions is 1-1.

Cardinality

- 1. Prove that if A and B are countable then $A \cup B$ is countable.
- 2. Prove that if A is countable and B is uncountable then B A is uncountable.