Chapters 2.2-2.5: Sets and Functions
 Monday, September 14

Key Notes

- One way to prove $A=B$: prove $A \subset B$ and $B \subset A$.
- $f: A \rightarrow B$ is 1-1 if $f(a)=f(b) \Rightarrow a=b$ for all $a, b \in A$.
- $f: A \rightarrow B$ is 1-1 if $a \neq b \Rightarrow f(a) \neq f(b)$ for all $a, b \in A$.
- $f: A \rightarrow B$ is onto if $(\forall b \in B)(\exists a \in A)(f(a)=b)$.

Warmup

1. What rule in propositional logic does $\overline{A \cup B}=\bar{A} \cap \bar{B}$ correspond to?
2. How can you say " f is not onto" in quantifier notation? How do you prove that a function is not onto?

Set Proofs 1

Consider the statement "If $A \subseteq B$ then $A \cup C \subseteq B \cup C$."

1. Find an analogous statement in propositional logic.
2. Draw a Venn Diagram that illustrates the proof.
3. Make a given-goal diagram for the proof.
4. Prove the statement. Prove or disprove the converse.

Do the same with the statement "If $A \subset B$ then $B \cup \bar{A}=U$."

Set Proofs 2

Prove the following statements using a series of equivalences.

1. $A-(A-C) \subseteq C$
2. $\overline{A \cup B} \cap B=\emptyset$
3. $B=(A \cap B) \cup(\bar{A} \cap B)$

Functions

1. Prove that $f(x)=3 x$ is onto if f is from \mathbb{R} to \mathbb{R} but not if f is from \mathbb{Z} to \mathbb{Z}.
2. Prove that $f(x)=3 x$ is 1-1 in either of the above cases.
3. Say that a function is increasing if $a>b$ implies that $f(a)>f(b)$ for all a, b in the domain of f. Prove that increasing functions are 1-1.
4. Prove that the sum of two increasing functions is increasing.
5. Prove or disprove: the sum of two 1-1 functions is $1-1$.

Cardinality

1. Prove that if A and B are countable then $A \cup B$ is countable.
2. Prove that if A is countable and B is uncountable then $B-A$ is uncountable.
