Chapters 2.2-2.5: Sets and Functions
 Monday, September 14

Key Notes

- One way to prove $A=B$: prove $A \subset B$ and $B \subset A$.
- $f: A \rightarrow B$ is 1-1 if $f(a)=f(b) \Rightarrow a=b$ for all $a, b \in A$.
- $f: A \rightarrow B$ is 1-1 if $a \neq b \Rightarrow f(a) \neq f(b)$ for all $a, b \in A$.
- $f: A \rightarrow B$ is onto if $(\forall b \in B)(\exists a \in A)(f(a)=b)$.

Warmup

1. What rule in propositional logic does $\overline{A \cup B}=\bar{A} \cap \bar{B}$ correspond to?

De Morgan's Law: $\neg(p \vee q) \equiv \neg p \wedge \neg q$.
2. How can you say " f is not onto" in quantifier notation? How do you prove that a function is not onto? $(\exists b \in B)(\forall a \in A)(f(a) \neq b)$, or $(\exists b \in B)(\neg \exists a \in A)(f(a)=b)$. Find an element of b that f does not map any element to.

Set Proofs 1

Consider the statement "If $A \subseteq B$ then $A \cup C \subseteq B \cup C$."

1. Find an analogous statement in propositional logic. $(p \Rightarrow q) \Rightarrow((p \vee r) \Rightarrow(q \vee r))$.
2. Draw a Venn Diagram that illustrates the proof.
3. Make a given-goal diagram for the proof. | Given | Goal |
| :---: | :---: |
| $A \subseteq B$ | $A \cup C \subseteq B \cup C$ |

Can be strengthened to the following: | Given | Goal |
| :---: | :---: |
| $A \subseteq B$ | $x \in B$ or $x \in C$ |
| $x \in A \cup C$ | |

This can be strengthed again, if you like:

Given	Goal
$A \subseteq B$	$x \in B$
$x \in A \cup C$	
$x \notin C$	

4. Prove the statement. Prove or disprove the converse.

Suppose $x \in A \cup C$. If $x \in C$, then $x \in B \cup C$. If $x \in A$, then $x \in B$ because $A \subseteq B$, and so $x \in B \cup C$. Therefore, if $A \subset B$ then $A \cup C \subseteq B \cup C$.

Do the same with the statement "If $A \subset B$ then $B \cup \bar{A}=U$."
Proposition: $(p \Rightarrow q) \Rightarrow(q \vee \neg p) \equiv \mathbf{T}$.

To prove: we know that $B \cup \bar{A} \subset U$ is always true, so we just have to prove that if $x \in U$ then $x \subset B \cup \bar{A}$. | Given | Goal |
| :---: | :---: |
| $A \subset B$ | $x \in B$ or $x \in \bar{A}$. |

This can be rearranged to get the following: | Given | Goal |
| :---: | :---: |
| | $A \subset B$ |
| | $x \notin \bar{A}$ |

Proof: We want to show that $x \in \bar{A} \cup B$ for any x. If $x \in \bar{A}$ then we are done. Otherwise, $x \in A$, which means that $x \in B$ because $A \subset B$. Therefore $B \cup \bar{A}=U$.

Set Proofs 2

Prove the following statements using a series of equivalences.

1. $A-(A-C) \subseteq C$

$$
\begin{aligned}
A-(A-C) & =A \cap \overline{A \cap \bar{C}} \\
& =A \cap(\bar{A} \cup \bar{C}) \\
& =(A \cap \bar{A}) \cup(A \cap \overline{\bar{C}}) \\
& =\emptyset \cup(A \cap C) \\
& =A \cap C \\
& \subset C
\end{aligned}
$$

2. $\overline{A \cup B} \cap B=\emptyset$

$$
\begin{aligned}
\overline{A \cup B} \cap B & =\bar{A} \cap \bar{B} \cap B \\
& =\bar{A} \cap \emptyset \\
& =\emptyset
\end{aligned}
$$

3. $B=(A \cap B) \cup(\bar{A} \cap B)$

$$
\begin{aligned}
(A \cap B) \cup(\bar{A} \cap B) & =(A \cup \bar{A}) \cap B \\
& =U \cap B \\
& =B
\end{aligned}
$$

Functions

1. Prove that $f(x)=3 x$ is onto if f is from \mathbb{R} to \mathbb{R} but not if f is from \mathbb{Z} to \mathbb{Z}.

In the first case: for any $b, f(b / 3)=b$.
This does not work for \mathbb{Z} because (for example) $1 / 3$ is not an integer, so there is no x such that $f(x)=1$.
2. Prove that $f(x)=3 x$ is 1-1 in either of the above cases.

If $f(a)=f(b)$ then $3 a=3 b$, so $a=b$.
3. Say that a function is increasing if $a>b$ implies that $f(a)>f(b)$ for all a, b in the domain of f. Prove that increasing functions are 1-1.
Supposing that $a \neq b$, we want to prove that $f(a) \neq f(b)$. If $a \neq b$, then $a>b$ or $a<b$. In the first case we get $f(a)>f(b)$ and in the second we get $f(a)<f(b)$. Either way, $f(a) \neq f(b)$.
4. Prove that the sum of two increasing functions is increasing.

Take any $a>b$ and increasing functions f and g. Then $(f+g)(a)=f(a)+g(a)>f(b)+g(a)>$ $f(b)+g(b)=(f+g)(b)$, so $f+g$ is increasing.
5. Prove or disprove: the sum of two 1-1 functions is 1-1.

False: $f(x)=x$ and $g(x)=-x$ are both 1-1 but the sum is $(f+g)(x)=0$, which is not one-to one on any domain with more than one element.

Cardinality

1. Prove that if A and B are countable then $A \cup B$ is countable.

Informal explanation: $|A \cup B| \leq|A|+|B|$, and since A and B are countable we can count the element of A and B together by alternating between the two sets.
Formal proof: there is a bijection f between A and the even numbers and a bijection g between B and the odd numbers since A and B are countable. Then define $h(x)=\left\{\begin{array}{ll}f(x) & x \in A \\ g(x) & x \notin A\end{array}\right.$.
h is therefore an injection from $A \cup B$ to \mathbb{N}. Note that we had to use the condition " $x \notin A$ " rather than " $x \in B$ " because it is possible for some element x to be in both A and B, in which case the function would not be well-defined for x.
2. Prove that if A is countable and B is uncountable then $B-A$ is uncountable.

Suppose that A is countable and $B-A$ is countable, then by the previous problem B would be countable. By the contrapositive, if A is countable but B is uncountable, then $B-A$ must be uncountable. A proof by contradiction would also work here.
As an example: \mathbb{R} is uncountable and \mathbb{Q} is countable, so the set of irrational numbers $\mathbb{R}-\mathbb{Q}$ is uncountable.

