Chapters 2.2-2.5: Sets and Functions Monday, September 14

Key Notes

- One way to prove A = B: prove $A \subset B$ and $B \subset A$.
- $f: A \to B$ is 1-1 if $f(a) = f(b) \Rightarrow a = b$ for all $a, b \in A$.
- $f: A \to B$ is 1-1 if $a \neq b \Rightarrow f(a) \neq f(b)$ for all $a, b \in A$.
- $f: A \to B$ is onto if $(\forall b \in B)(\exists a \in A)(f(a) = b)$.

Warmup

- 1. What rule in propositional logic does $\overline{A \cup B} = \overline{A} \cap \overline{B}$ correspond to? De Morgan's Law: $\neg(p \lor q) \equiv \neg p \land \neg q$.
- 2. How can you say "f is not onto" in quantifier notation? How do you prove that a function is not onto? $(\exists b \in B)(\forall a \in A)(f(a) \neq b)$, or $(\exists b \in B)(\neg \exists a \in A)(f(a) = b)$. Find an element of b that f does not map any element to.

Set Proofs 1

Consider the statement "If $A\subseteq B$ then $A\cup C\subseteq B\cup C.$ "

- 1. Find an analogous statement in propositional logic. $(p \Rightarrow q) \Rightarrow ((p \lor r) \Rightarrow (q \lor r)).$
- 2. Draw a Venn Diagram that illustrates the proof.
- 3. Make a given-goal diagram for the proof. $\begin{array}{c|c} \operatorname{Given} & \operatorname{Goal} \\ \hline A \subseteq B & A \cup C \subseteq B \cup C \\ \hline \end{array}$ Can be strengthened to the following: $\begin{array}{c|c} \operatorname{Given} & \operatorname{Goal} \\ \hline A \subseteq B & x \in B \text{ or } x \in C \\ \hline x \in A \cup C \end{array}$

This can be strengthed again, if you like:

$$\begin{array}{c|c} Given & Goal \\ \hline A \subseteq B & x \in B \\ x \in A \cup C \\ x \notin C \end{array}$$

4. Prove the statement. Prove or disprove the converse.

Suppose $x \in A \cup C$. If $x \in C$, then $x \in B \cup C$. If $x \in A$, then $x \in B$ because $A \subseteq B$, and so $x \in B \cup C$. Therefore, if $A \subset B$ then $A \cup C \subseteq B \cup C$. Do the same with the statement "If $A \subset B$ then $B \cup \overline{A} = U$." Proposition: $(p \Rightarrow q) \Rightarrow (q \lor \neg p) \equiv \mathbf{T}$.

To prove: we know that $B \cup \overline{A} \subset U$ is always true, so we just have to prove that if $x \in U$ then $x \subset B \cup \overline{A}$. Given | Goal

$$A \subset B$$
 $x \in B$ or $x \in \overline{A}$.

This can be rearranged to get the following: $\begin{array}{c|c} \mbox{Given} & \mbox{Goal} \\ \hline A \subset B \\ x \notin \overline{A} \\ \end{array} \begin{array}{c|c} x \in B \\ x \in B \\ \end{array}$

Proof: We want to show that $x \in \overline{A} \cup B$ for any x. If $x \in \overline{A}$ then we are done. Otherwise, $x \in A$, which means that $x \in B$ because $A \subset B$. Therefore $B \cup \overline{A} = U$.

Set Proofs 2

Prove the following statements using a series of equivalences.

1. $A - (A - C) \subseteq C$

$$A - (A - C) = A \cap \overline{A \cap \overline{C}}$$
$$= A \cap (\overline{A} \cup \overline{C})$$
$$= (A \cap \overline{A}) \cup (A \cap \overline{\overline{C}})$$
$$= \emptyset \cup (A \cap C)$$
$$= A \cap C$$
$$\subset C$$

2. $\overline{A \cup B} \cap B = \emptyset$

$$\overline{A \cup B} \cap B = \overline{A} \cap \overline{B} \cap B$$
$$= \overline{A} \cap \emptyset$$
$$= \emptyset$$

3. $B = (A \cap B) \cup (\overline{A} \cap B)$

$$(A \cap B) \cup (\overline{A} \cap B) = (A \cup \overline{A}) \cap B$$
$$= U \cap B$$
$$= B$$

Functions

- Prove that f(x) = 3x is onto if f is from ℝ to ℝ but not if f is from ℤ to ℤ.
 In the first case: for any b, f(b/3) = b.
 This does not work for ℤ because (for example) 1/3 is not an integer, so there is no x such that f(x) = 1.
- 2. Prove that f(x) = 3x is 1-1 in either of the above cases. If f(a) = f(b) then 3a = 3b, so a = b.
- 3. Say that a function is *increasing* if a > b implies that f(a) > f(b) for all a, b in the domain of f. Prove that increasing functions are 1-1.

Supposing that $a \neq b$, we want to prove that $f(a) \neq f(b)$. If $a \neq b$, then a > b or a < b. In the first case we get f(a) > f(b) and in the second we get f(a) < f(b). Either way, $f(a) \neq f(b)$.

4. Prove that the sum of two increasing functions is increasing.

Take any a > b and increasing functions f and g. Then (f + g)(a) = f(a) + g(a) > f(b) + g(a) > f(b) + g(b) = (f + g)(b), so f + g is increasing.

5. Prove or disprove: the sum of two 1-1 functions is 1-1.

False: f(x) = x and g(x) = -x are both 1-1 but the sum is (f + g)(x) = 0, which is not one-to one on any domain with more than one element.

Cardinality

1. Prove that if A and B are countable then $A \cup B$ is countable.

Informal explanation: $|A \cup B| \le |A| + |B|$, and since A and B are countable we can count the element of A and B together by alternating between the two sets.

Formal proof: there is a bijection f between A and the even numbers and a bijection g between B and the odd numbers since A and B are countable. Then define $h(x) = \begin{cases} f(x) & x \in A \\ g(x) & x \notin A \end{cases}$.

h is therefore an injection from $A \cup B$ to \mathbb{N} . Note that we had to use the condition " $x \notin A$ " rather than " $x \in B$ " because it is possible for some element x to be in both A and B, in which case the function would not be well-defined for x.

2. Prove that if A is countable and B is uncountable then B - A is uncountable.

Suppose that A is countable and B-A is countable, then by the previous problem B would be countable. By the contrapositive, if A is countable but B is uncountable, then B - A must be uncountable. A proof by contradiction would also work here.

As an example: \mathbb{R} is uncountable and \mathbb{Q} is countable, so the set of irrational numbers $\mathbb{R} - \mathbb{Q}$ is uncountable.