Chapters 1.7-2.2: Proofs, some Sets
 Wednesday, September 9

Key Notes

- Direct proof: to prove $A \rightarrow B$, take A as a given and prove B.
- Proof by contraposition: to prove $A \rightarrow B$, assume $\neg B$ and prove $\neg A$.
- To prove $A \Leftrightarrow B$, prove the forward/contrapositive and inverse/converse.
- All statements about sets have an analogous form in predicate logic.

Warmup

1. Come up with English sentences to illustrate each of the following tautologies:
(a) $((p \rightarrow q) \wedge p) \rightarrow q$
(b) $((p \rightarrow q) \wedge \neg q) \rightarrow \neg p$
(c) $((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$
(d) $((p \vee q) \wedge \neg p) \rightarrow q$
(e) $((p \rightarrow q) \wedge(\neg p \rightarrow r)) \rightarrow(q \vee r)$
2. What, if anything, is wrong with the following reasoning?
"Suppose that x is a number such that $\sqrt{2 x^{2}-1}=x$. Then

$$
\begin{aligned}
\sqrt{2 x^{2}-1} & =x \\
2 x^{2}-1 & =x^{2} \\
x^{2}-1 & =0 \\
(x+1)(x-1) & =0 \\
x & = \pm 1
\end{aligned}
$$

Therefore, if $\sqrt{2 x^{2}-1}=x$ then $x= \pm 1$."

Biconditionals

State the inverse, converse, and contrapositive of each of these statements. Which forms apppear to be the simplest to prove? Prove the statements.

1. $x=3$ if and only if $x^{2}=9$ and $x \neq-3$.
2. $x^{2}=1$ if and only if $x=1$ or $x=-1$ (one direction requires a proof by cases).
3. $\max (a, b)=\min (a, b)$ if and only if $a=b$.

Backward Reasoning

For which of these claims is the converse true? If false, give a counterexample.

1. If $a=b$ then $a c=b c$.
2. If $a>0$ then $a^{2}>0$.
3. If $a=b$ then $a^{2}=b^{2}$.
4. If $a>0$ then $1 / a>0$.
5. Suppose $c \neq 0$. If $a=b$ then $a c=b c$.
6. Suppose $a, b \geq 0$. If $a>b$ then $a^{2}>b^{2}$.

Backwards Proofs

1. Prove that $(x-3)^{2}+(x+3)^{2}=2(x+3)(x-3)+36$.
2. Prove that if $x, y>0$ then $\frac{2 x y}{x+y} \leq \frac{x+y}{2}$, with equality if and only if $x=y$.

Set Operations

What can you say about the sets A and B if

1. $A \cup B=A$?
2. $A-B=A$?
3. $A-B=B-A$?
4. $A \cup B=B \cup A$?

Relation to Propositional Logic

1. What rule in propositional logic does the identity $A \cap U=A$ correspond to? What does U correspond to?
2. What does $\overline{A \cup B}=\bar{A} \cap \bar{B}$ correspond to?
3. What does \emptyset correspond to?
4. Prove: if $A \subset B$ and $B \subset C$ then $A \subset C$. What rule of inference does this correspond to?
5. Prove: if $A \subset B$ and $\bar{A} \subset C$ then $B \cup C=U$. What rule of inference does this correspond to?
