Chapters 1.7-2.2: Proofs, some Sets Wednesday, September 9

Key Notes

- Direct proof: to prove $A \rightarrow B$, take A as a given and prove B.
- Proof by contraposition: to prove $A \to B$, assume $\neg B$ and prove $\neg A$.
- To prove $A \Leftrightarrow B$, prove the forward/contrapositive and inverse/converse.
- All statements about sets have an analogous form in predicate logic.

Warmup

- 1. Come up with English sentences to illustrate each of the following tautologies:
 - (a) $((p \to q) \land p) \to q$
 - (b) $((p \rightarrow q) \land \neg q) \rightarrow \neg p$
 - (c) $((p \to q) \land (q \to r)) \to (p \to r)$
 - (d) $((p \lor q) \land \neg p) \to q$
 - (e) $((p \to q) \land (\neg p \to r)) \to (q \lor r)$
- 2. What, if anything, is wrong with the following reasoning?

"Suppose that x is a number such that $\sqrt{2x^2 - 1} = x$. Then

$$\sqrt{2x^2 - 1} = x$$
$$2x^2 - 1 = x^2$$
$$x^2 - 1 = 0$$
$$(x + 1)(x - 1) = 0$$
$$x = \pm 1$$

Therefore, if $\sqrt{2x^2 - 1} = x$ then $x = \pm 1$."

Biconditionals

State the inverse, converse, and contrapositive of each of these statements. Which forms apppear to be the simplest to prove? Prove the statements.

- 1. x = 3 if and only if $x^2 = 9$ and $x \neq -3$.
- 2. $x^2 = 1$ if and only if x = 1 or x = -1 (one direction requires a proof by cases).
- 3. $\max(a, b) = \min(a, b)$ if and only if a = b.

Backward Reasoning

For which of these claims is the converse true? If false, give a counterexample.

1. If a = b then ac = bc.4. If a > 0 then $a^2 > 0$.2. If a = b then $a^2 = b^2$.5. If a > 0 then 1/a > 0.3. Suppose $c \neq 0$. If a = b then ac = bc.6. Suppose $a, b \ge 0$. If a > b then $a^2 > b^2$.

Backwards Proofs

- 1. Prove that $(x-3)^2 + (x+3)^2 = 2(x+3)(x-3) + 36$.
- 2. Prove that if x, y > 0 then $\frac{2xy}{x+y} \le \frac{x+y}{2}$, with equality if and only if x = y.

Set Operations

What can you say about the sets A and B if

 1. $A \cup B = A$?
 3. A - B = B - A?

 2. A - B = A?
 4. $A \cup B = B \cup A$?

Relation to Propositional Logic

- 1. What rule in propositional logic does the identity $A \cap U = A$ correspond to? What does U correspond to?
- 2. What does $\overline{A \cup B} = \overline{A} \cap \overline{B}$ correspond to?
- 3. What does \emptyset correspond to?
- 4. Prove: if $A \subset B$ and $B \subset C$ then $A \subset C$. What rule of inference does this correspond to?
- 5. Prove: if $A \subset B$ and $\overline{A} \subset C$ then $B \cup C = U$. What rule of inference does this correspond to?