Chapter 10.7: Planar Graphs
 Wednesday, December 2

Summary

- A planar graph can be drawn in the plane so that no edges intersect. Such a drawing is a plane graph.
- Euler's Formula: For a plane graph, $v-e+r=2$.
- If $v \geq 3$ then $e \leq 3 v-6$.
- Every planar graph has a vertex of degree ≤ 5.
- If G is triangle-free and $v \geq 3$ then $e \leq 2 v-4$
- Kuratowski's Theorem: a graph is planar if and only if it contains no subgraph homeomorphic to K_{5} or $K_{3,3}$.

Euler's Formula

1. A connected plane graph has six vertices, each of degree four. Into how many regions does the graph divide the plane?
The graph has $(6 \cdot 4) / 2=12$ edges total, so using the formula $v-e+r=2$ gives $6-12+r=2$, so $r=8$. One example of such a graph is the plane grpah of the octahedron.
2. Find all five Platonic solids. Each one can be described by gluing regular n-gons together with m polygons to a vertex. For example, a cube is made of squares with 3 squares to a vertex and has 6 faces. Find the number of faces of the other Platonic solids.
(a) Tetrahedron: 4 triangles, 3 to a vertex.
(b) Octahedron: 8 triangles, 4 to a vertex.
(c) Icosahedron: 20 triangles, 5 to a vertex.
(d) Cube: 6 squares, 3 to a vertex.
(e) Dodecahedron: 12 pentagons, 3 to a vertex.
3. If you have a solid block made of triangles and octagons with 3 shapes to a vertex, what can you say about the relation between the number of triangles and the number of octagons? (One of these shapes is made by slicing the vertices off of a cube.)
We know that $v-e+r=2$ for the tiling. Each triangle counts as $3 / 3$ vertices, 1 face, and $3 / 2$ edges, and so adds $1 / 2$ to the total. Each octagon counts as $8 / 3$ vertices, 1 face, and $8 / 2$ edges, and so subtracts $1 / 3$ from the total. Thus $\frac{1}{2} T-\frac{1}{3} O=2$, or $3 T-2 O=12$. One option is 4 triangles and 0 octagons (a tetrahedron), and cutting the edges off of a cube gives 8 triangles and 6 octagons.
4. What if you have a solid block made of triangles and squares with 4 shapes to a vertex?

We know that $v-e+r=2$ for the tiling. Each triangle counts as $3 / 4$ vertices, 1 face, and $3 / 2$ edges, so adds $1 / 4$ to the total. Each square counts as $4 / 4$ vertices, 1 face, and $4 / 2$ edges, so adds 0 to the total. Such a shape must therefore have 8 triangles.
5. Find two trees with the same number of vertices that are homeomorphic but not isomorphic.

The smallest such trees have 6 vertices each: one central vertex of degree 3 and three chains of lengths $1,1,3$ and $1,2,2$, respectively.

Planar Graphs

1. If a connected graph has n vertices and $n+2$ edges, then G is planar. For $n \geq 6$, this becomes false if we say $n+3$ instead of $n+2$.
K_{5} has 10 edges and 5 vertices while $K_{3,3}$ has 9 edges and 6 vertices. Any connected graph with n vertices containing a subgraph homeomorphic to either of these two must therefore have at least $n+3$ edges.
$K_{3,3}$ is an example of a non-planar graph with n vertices and $n+3$ edges.
2. Show that the Petersen graph is not planar (find a subgraph homeomorphic to $K_{3,3}$).

Solution on page 725 of Rosen.
3. Find a bipartite graph G that is not planar but does NOT contain a subdivision of $K_{3,3}$. Your graph should have no more than 20 edges.
Add a vertex to the middle of every edge of K_{5}. The resulting graph will be bipartite with 20 edges but does not contain $K_{3,3}$ since it is homeomorphic to K_{5}.

Bonus

1. Solve the problem that Matt Damon solved in Godd Will Hunting: "How many (non-isomorphic) homeomorphically irreducible trees are there on 10 vertices?" A tree is homeomorphically irreducible if it has no vertices of degree 2 .
2. If $v-e+r=k$ for a tiling of some shape, then we can say that the Euler characteristic of the shape is k. For example, the Euler characteristic of a sphere is 2 . Do some experimentation and find the Euler characteristics of the torus and double torus.

The torus has Euler characteristic 0 (it can be tiled with squares, 4 to a vertex) and the double torus has Euler characteristic - 2 (it can be tiled with 8 pentagons, 4 to a vertex).

