Chapter 10.3-10.4: Paths and Isomorphisms
 Monday, November 30

Definitions

- $\kappa(G)$: Vertex connectivity of G.
- $\lambda(G)$: Edge connectivity of G.

Isomorphisms

1. Show that C_{5} and $\overline{C_{5}}$ are isomorphic.
2. Show that C_{4} and $\overline{C_{4}}$ are not isomorphic.
3. Find a graph G on 4 vertices such that G and \bar{G} are isomorphic.
4. Find all isomers (non-isomorphic graphs) of pentane $\left(C_{5} H_{12}\right)$.
5. Show that the following two graphs are not isomorphic:

Connectedness

1. Find a graph G such that $\kappa(G)<\lambda(G)$.
2. Find a graph $G=(V, E)$ such that $\lambda(G)<\min _{v \in V} \operatorname{deg}(v)$.

Adjacency Matrices

Here is a picture of a graph:

1. Draw the adjacency matrix A of the graph.
2. Find A^{2}. What do the diagonal elements of the matrix tell you?

3 . How can you use A^{3} to count the triangles in a graph?

Proofs

1. Show that if G and \bar{G} are isomorphic then $n \equiv 0(\bmod 4)$ or $n \equiv 1(\bmod 4)$.
2. Prove: if v has odd degree in G then there is some vertex w such that v and w are connected by a path.
