Chapter 10.3-10.4: Paths and Isomorphisms Monday, November 30

Definitions

- $\kappa(G)$: Vertex connectivity of G.
- $\lambda(G)$: Edge connectivity of G.

Isomorphisms

- 1. Show that C_5 and $\overline{C_5}$ are isomorphic.
- 2. Show that C_4 and $\overline{C_4}$ are not isomorphic.
- 3. Find a graph G on 4 vertices such that G and \overline{G} are isomorphic.
- 4. Find all isomers (non-isomorphic graphs) of pentane (C_5H_{12}) .
- 5. Show that the following two graphs are not isomorphic:

Connectedness

- 1. Find a graph G such that $\kappa(G) < \lambda(G)$.
- 2. Find a graph G = (V, E) such that $\lambda(G) < \min_{v \in V} \deg(v)$.

Adjacency Matrices

Here is a picture of a graph:

- 1. Draw the adjacency matrix A of the graph.
- 2. Find A^2 . What do the diagonal elements of the matrix tell you?
- 3. How can you use A^3 to count the triangles in a graph?

Proofs

- 1. Show that if G and \overline{G} are isomorphic then $n \equiv 0 \pmod{4}$ or $n \equiv 1 \pmod{4}$.
- 2. Prove: if v has odd degree in G then there is some vertex w such that v and w are connected by a path.