Chapter 10.3-10.4: Paths and Isomorphisms Monday, November 30

Definitions

- $\kappa(G)$: Vertex connectivity of G.
- $\lambda(G)$: Edge connectivity of G.

Isomorphisms

- 1. Show that C_5 and $\overline{C_5}$ are isomorphic. $\overline{C_5}$ is a five-pointed star, which is the same as a cycle of length 5 under the appropriate isomorphism.
- 2. Show that C_4 and $\overline{C_4}$ are not isomorphic. $\overline{C_4}$ has only 2 edges but C_4 has 4.
- 3. Find a graph G on 4 vertices such that G and \overline{G} are isomorphic. The path of length 3 (P_3) is isomorphic to its complement.
- 4. Find all isomers (non-isomorphic graphs) of pentane (C_5H_{12}) . There are three of them.
- 5. Show that the following two graphs are not isomorphic:

The two vertices of degree 5 are adjacent in the first graph but not in the second.

Connectedness

- 1. Find a graph G such that $\kappa(G) < \lambda(G)$. Join two triangles at a single vertex.
- 2. Find a graph G = (V, E) such that $\lambda(G) < \min_{v \in V} \deg(v)$. Join two triangles by a single edge.

Adjacency Matrices

Here is a picture of a graph:

1. Draw the adjacency matrix A of the graph.

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

2. Find A^2 . What do the diagonal elements of the matrix tell you?

$$A^{2} = \begin{pmatrix} 4 & 1 & 2 & 2 & 1 \\ 1 & 2 & 1 & 2 & 1 \\ 2 & 1 & 3 & 1 & 2 \\ 2 & 2 & 1 & 3 & 1 \\ 1 & 1 & 2 & 1 & 2 \end{pmatrix}.$$

The diagonal element A_{ii} tells you the degree of vertex i.

3. How can you use A³ to count the triangles in a graph? Add up the diagonal elements of A³, then divide by 3 since each triangle (cycle of length 3) is counted by 3 different vertices.

Proofs

- 1. Show that if G and \overline{G} are isomorphic then $n \equiv 0 \pmod{4}$ or $n \equiv 1 \pmod{4}$.
 - If they are isomorphic then G and \overline{G} must have the same number of edges, thus the number of possible edges $\binom{n}{2}$ is even. So 2|n(n-1)/2, and therefore 4|n(n-1). Since n and n-1 are relatively prime, this can only happen if 4|n or 4|(n-1).

2. Prove: if v has odd degree in G then there is some vertex w such that v and w are connected by a path.

The Handshake Theorem (the number of vertices with odd degree is even) holds for the connected components of a graph as well as the entire graph. Thus if there is at least one vertex of odd degree in a component C then there must be another as well. Since C is connected, the two vertices are connected by a path.