Chapter 10.3-10.4: Paths and Isomorphisms
 Monday, November 30

Definitions

- $\kappa(G)$: Vertex connectivity of G.
- $\lambda(G)$: Edge connectivity of G.

Isomorphisms

1. Show that C_{5} and $\overline{C_{5}}$ are isomorphic.
$\overline{C_{5}}$ is a five-pointed star, which is the same as a cycle of length 5 under the appropriate isomorphism.
2. Show that C_{4} and $\overline{C_{4}}$ are not isomorphic.
$\overline{C_{4}}$ has only 2 edges but C_{4} has 4 .
3. Find a graph G on 4 vertices such that G and \bar{G} are isomorphic.

The path of length $3\left(P_{3}\right)$ is isomorphic to its complement.
4. Find all isomers (non-isomorphic graphs) of pentane $\left(C_{5} H_{12}\right)$.

There are three of them.
5. Show that the following two graphs are not isomorphic:

The two vertices of degree 5 are adjacent in the first graph but not in the second.

Connectedness

1. Find a graph G such that $\kappa(G)<\lambda(G)$.

Join two triangles at a single vertex.
2. Find a graph $G=(V, E)$ such that $\lambda(G)<\min _{v \in V} \operatorname{deg}(v)$.

Join two triangles by a single edge.

Adjacency Matrices

Here is a picture of a graph:

1. Draw the adjacency matrix A of the graph.

$$
A=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right)
$$

2. Find A^{2}. What do the diagonal elements of the matrix tell you?

$$
A^{2}=\left(\begin{array}{lllll}
4 & 1 & 2 & 2 & 1 \\
1 & 2 & 1 & 2 & 1 \\
2 & 1 & 3 & 1 & 2 \\
2 & 2 & 1 & 3 & 1 \\
1 & 1 & 2 & 1 & 2
\end{array}\right)
$$

The diagonal element $A_{i i}$ tells you the degree of vertex i.
3. How can you use A^{3} to count the triangles in a graph?

Add up the diagonal elements of A^{3}, then divide by 3 since each triangle (cycle of length 3) is counted by 3 different vertices.

Proofs

1. Show that if G and \bar{G} are isomorphic then $n \equiv 0(\bmod 4)$ or $n \equiv 1(\bmod 4)$.

If they are isomorphic then G and \bar{G} must have the same number of edges, thus the number of possible edges $\binom{n}{2}$ is even. So $2 \mid n(n-1) / 2$, and therefore $4 \mid n(n-1)$. Since n and $n-1$ are relatively prime, this can only happen if $4 \mid n$ or $4 \mid(n-1)$.
2. Prove: if v has odd degree in G then there is some vertex w such that v and w are connected by a path.
The Handshake Theorem (the number of vertices with odd degree is even) holds for the connected components of a graph as well as the entire graph. Thus if there is at least one vertex of odd degree in a component C then there must be another as well. Since C is connected, the two vertices are connected by a path.

