Chapter 10.1-10.2: Graph Theory Monday, November 13

Definitions

- K_n : the complete graph on *n* vertices
- C_n : the cycle on n vertices
- $K_{m,n}$ the complete bipartite graph on m and n vertices
- Q_n : the hypercube on 2^n vertices
- H = (W, F) is a spanning subgraph of G = (V, E) if H is a subgraph with the same set of vertices as G (i.e., W = V).
- $\overline{G} = (V, F)$ is the complement of G = (V, E), where $(u, v) \in F$ if and only if $(u, v) \notin E$ for vertices $u, v \in V$.

Warmup

- 1. If G = (V, E) is a simple graph, show that $|E| \leq {n \choose 2}$.
- 2. How many triangles does the graph K_n contain?
- 3. Show that $|E(G)| + |E(\overline{G})| = \binom{n}{2}$.
- 4. Show that number of graphs with n (labeled) vertices is $2^{\binom{n}{2}}$.
- 5. Draw K_4 , C_5 , $K_{2,4}$, and Q_3 .

Graphs

- 1. How many edges does K_n have? What about C_n ? $K_{m,n}$?
- 2. Let G have n vertices and m edges. How many induced subgraphs are there? How many spanning subgraphs are there?
- 3. How many spanning subgraphs of K_n are there with exactly m edges?
- 4. For which values of n is K_n bipartite? What about C_n ?
- 5. Describe and count the edges of $\overline{K_n}, \overline{C_n}, \overline{K_{m,n}}$.

Pictures

- 1. Draw a directed graph on the 7 vertices $\{0, 1, \ldots, 6\}$ where (u, v) is an edge if and only if $v \equiv 3u \pmod{7}$.
- 2. Draw a directed graph on the 20 vertices $\{1, 2, ..., 20\}$ where (a, b) is an edge if and only if a|b. Organize the vertices in the clearest layout possible.

Proofs

- 1. Show that if G is bipartite then $|E| \leq \lfloor n^2/4 \rfloor$.
- 2. Show that in a simple graph with at least two vertices there must be two vertices that have the same degree (Hint: pigeon-hole principle).
- 3. (Hard) If G is triangle-free, then $|E(G)| \leq \lfloor n^2/4 \rfloor$ (use inductions in increments of 2, delete both vertices connected by some edge for the inductive step).