Chapter 8.4-6: Generating Functions and Inclusion-Exclusion
 Monday, November 16

Warmup

1. $\frac{1}{1-x}=\sum_{i=0}^{\infty} x^{i}$
2. $\frac{1}{1-2 x}=\sum_{i=0}^{\infty}(2 x)^{i}$
3. $\frac{1}{1-x^{2}}=\sum_{i=0}^{\infty} x^{2 i}$
4. $\sum_{i=0}^{\infty}(i+1) x^{i}=\left(\frac{1}{1-x}\right)^{2}$
5. If E and F are independent events, what is $p(E \cup F)$? $p(E \cup F)=p(E)+p(F)-p(E \cap F)=$ $p(E)+p(F)-p(E) p(F)$.

Generating Functions

1. How many ways are there to make change for a dollar with pennies, nickels, dimes, quarters, and half-dollars? Do not find the answer, but explain how to get it using generating functions.
The number of ways is equal to the coefficient of the x^{100} term in $\frac{1}{1-x} \frac{1}{1-x^{5}} \frac{1}{1-x^{10}} \frac{1}{1-x^{25}} \frac{1}{1-x^{50}}$.
2. Give eight cookies to three children so that each child gets between 1 and 4 cookies.

Should be the x^{8} coefficient of $\left(x+x^{2}+x^{3}+x^{4}\right)^{3}$, which is 12 .
3. Find a function that generates the sequence $a_{n}=n \cdot 3^{n}$.
$\left(\frac{1}{1-3 x}\right)^{2}-\frac{1}{1-3 x}$.

More Inclusion-Exclusion

1. How many numbers between 1 and 60 are divisible by 2 or 3 or 5 ?

By inclusion-exclusion, the number is $\frac{60}{2}+\frac{60}{3}+\frac{60}{5}-\frac{60}{6}-\frac{60}{10}-\frac{60}{15}+\frac{60}{30}=44$.
2. Four men check four hats, which at the end of the evening are returned to them randomly. For each number n between 0 and 4 , find the probability that n of the men get their correct hat back.
The chance of 0 men getting their hats back is the probability of a derangement, which is $(1-1+$ $1 / 2-1 / 6+1 / 24)=3 / 8$.
The chance of 1 man getting the right hat back is 4 times $(1 / 4)$ (decide which man gets the correct hat, then there is a $1 / 4$ chance of that happening) times the probability of a 3-deragment, which is $(1-1+1 / 2-1 / 6)=1 / 3$.
The chance of 2 men getting the right hat back is $\binom{4}{2} / 12$ (there are $\binom{4}{2}$ ways to choose the 2 men that get their correct hats, and a $(1 / 4) \cdot(1 / 3)=1 / 12$ chance that they do get their correct hats) times the probability of a 2 -deragment, so $1 / 4$.
There is no chance that only 1 man will get the wrong hat.
The chance that all will get the right hat is $1 / 24$.
Note that $3 / 8+1 / 3+1 / 4+1 / 24=(9+8+6+1) / 24=1$.

Relations

Decide whether each of these relations is reflexive, symmetric, antisymmetric, or transitive:

1. $(a, b) \in R$ if $a \geq b$. Reflexive, antisymmetric, transitive.
2. $(a, b) \in R$ if $a=b$. Reflexive, symmetric, transitive.
3. $(a, b) \in R$ if $a b=0$. Symmetric only.
4. $((a / b),(c, d)) \in R$ if $a c=b d$. Reflexive, symmetric, transitive.

Draw a Venn Diagram with a circle for each of the three properties "reflexive," "symmetric," and "transitive." There are eight regions in this Venn Diagram. Find a relation that belongs in each region.
Good luck!

