More Midterm Review
 Monday, November 2

Number Theory

1. True or false: there exist integers x and y such that $13 x+41 y=7$.
2. True or false: there exist integers x and y such that $15 x+21 y=7$.
3. Prove or give a counterexample: if $d \mid a$ and $d \mid b$ then $d \mid \operatorname{gcd}(a, b)$.
4. Prove that if n is odd then $n^{2} \equiv 1(\bmod 8)$.
5. What is $11^{122} \bmod 7$?

Cryptography

1. If we encrypt a number with the scheme $p \mapsto p^{11}(\bmod 35)$, then what is the decryption exponent?

Induction

1. Given: if p is prime and $p \mid a b$ then $p \mid a$ or $p \mid b$. Prove: if p is prime and $p \mid a_{1} a_{2} \cdots a_{n}$ then $p \mid a_{i}$ for some i.
2. Prove that consecutive Fibonacci numbers are relatively prime.

Counting

1. How many ways are there to buy 7 fruit if your have 10 choices of fruit?
2. What if you want to buy at least one apple and exactly one pear?

Probability

1. What is the chance that a random permutation of the string "COMBINATORICS" will be "MANICROBOTICS"?
2. Urn A has 3 red balls and 1 green ball. Urn B has 2 red balls and 3 green balls. You draw a ball from a random urn and win a prize if you correctly guess which urn you drew the ball from. Which color ball would you rather draw?
3. A loaded six-sided die rolls the number n with probability $n / 21$ for $n=1,2, \ldots, 6$. If you roll such a die three times, what is the probability that the sum of the three rolls will be 6 ?
