More Midterm Review
 Monday, November 2

Number Theory

1. True or false: there exist integers x and y such that $13 x+41 y=7$.

True by Bezout's Theorem since 13 and 41 are relatively prime.
2. True or false: there exist integers x and y such that $15 x+21 y=7$.

False since $\operatorname{gcd}(15,21)=3$ but $3 \nmid 7$.
3. Prove or give a counterexample: if $d \mid a$ and $d \mid b$ then $d \mid \operatorname{gcd}(a, b)$.

True: Say $a=d j$ and $b=d k$. We know that there exist x and y such that $a x+b y=\operatorname{gcd}(a, b)$, but this means that $(d j) x+(d k) y=\operatorname{gcd}(a, b)$, and so $d(j x+k y)=\operatorname{gcd}(a, b)$. Thus any common divisor of a and b divides the greatest common divisor.
4. Prove that if n is odd then $n^{2} \equiv 1(\bmod 8)$. n is either $1,3,5$, or $7 \bmod 8$, so we just have to check that $1^{2} \equiv 3^{2} \equiv 5^{2} \equiv 7^{2} \equiv 1(\bmod 8)$.

5 . What is $11^{122} \bmod 7$?
By Fermat's Little Theorem, $11^{6} \equiv 1(\bmod 7)$. Thus $11^{122} \equiv 11^{6 \cdot 20} \cdot 11^{2} \equiv 1 \cdot 2 \equiv 2(\bmod 7)$.

Cryptography

1. If we encrypt a number with the scheme $p \mapsto p^{11}(\bmod 35)$, then what is the decryption exponent?
$35=7 \cdot 5$, so we want to find the multiplicative inverse of $11 \bmod (7-1)(5-1)=24$. As it turns out 11 is its own inverse since $11^{2}=121 \equiv 1(\bmod 24)$, so the decryption exponent is the same as the encryption exponent (not a very secure system!).

Induction

1. Given: if p is prime and $p \mid a b$ then $p \mid a$ or $p \mid b$. Prove: if p is prime and $p \mid a_{1} a_{2} \cdots a_{n}$ then $p \mid a_{i}$ for some i.

Proof by induction: The case $n=2$ is already given.
Then suppose it holds for n. If $p \mid\left(a_{1} \cdots a_{n}\right) a_{n+1}$ then either $p \mid a_{1} \cdots a_{n}$ or $p \mid a_{n+1}$. In the latter case, we are done. In the former, the inductive hypothesis implies that $p \mid a_{i}$ for some i between 1 and n. Either way, $p \mid a_{i}$ for some i between 1 and $n+1$, so the proof by induction is complete.
2. Prove that consecutive Fibonacci numbers are relatively prime.

Base case: $f_{0}=0$ and $f_{1}=1$ are relatively prime.
Inductive step: Suppose $\operatorname{gcd}\left(f_{n-1}, f_{n}\right)=1$. Then $\operatorname{gcd}\left(f_{n}, f_{n+1}\right)=\operatorname{gcd}\left(f_{n}, f_{n}+f_{n-1}\right)=\operatorname{gcd}\left(f_{n}, f_{n-1}\right)=$ 1. This completes the proof by induction.

Counting

1. How many ways are there to buy 7 fruit if your have 10 choices of fruit?

Stars and bars: there are 9 "bars" dividing the fruit and 7 stars, so the number of options is $\binom{16}{7}$.
2. What if you want to buy at least one apple and exactly one pear?

Buy an apple and a pear. Now you want to buy 5 fruit and have 9 types to choose from (removing the pears), so there are 5 stars and 8 bars, giving you $\binom{13}{5}$ options.

Probability

1. What is the chance that a random permutation of the string "COMBINATORICS" will be "MANICROBOTICS"?

There are $13!/(2!)^{3}$ distinct ways to rearrange the letters, so the chance of making the desired string is $8 / 13$!.
2. Urn A has 3 red balls and 1 green ball. Urn B has 2 red balls and 3 green balls. You draw a ball from a random urn and win a prize if you correctly guess which urn you drew the ball from. Which color ball would you rather draw?
If you draw a red ball then the relative odds are $3 / 4: 2 / 5=15: 8$. If you draw a green ball then the relative odds are $1 / 4: 3 / 5=5: 12$. The odds in the second case are more lopsided, so drawing a green ball would give you the better chance of guessing correctly.
3. A loaded six-sided die rolls the number n with probability $n / 21$ for $n=1,2, \ldots, 6$. If you roll such a die three times, what is the probability that the sum of the three rolls will be 6 ?
The two ways to roll a total of 6 are $1+1+4$ and $1+2+3$. Accounting for the number of ways to rearrange these rolls, the probability is then $3 \cdot(1 / 21)^{2} \cdot(4 / 21)+6 \cdot(1 / 21) \cdot(2 / 21) \cdot(3 / 21)=48 / 21^{3}$.

