Number Theory

1. True or false: there exist integers \(x\) and \(y\) such that \(13x + 41y = 7\).
 True by Bezout’s Theorem since 13 and 41 are relatively prime.

2. True or false: there exist integers \(x\) and \(y\) such that \(15x + 21y = 7\).
 False since \(\gcd(15, 21) = 3\) but \(3 \nmid 7\).

3. Prove or give a counterexample: if \(d \mid a\) and \(d \mid b\) then \(d \mid \gcd(a, b)\).
 True: Say \(a = dj\) and \(b = dk\). We know that there exist \(x\) and \(y\) such that \(ax + by = \gcd(a, b)\), but this means that \((dj)x + (dk)y = \gcd(a, b)\), and so \(d(jx + ky) = \gcd(a, b)\). Thus any common divisor of \(a\) and \(b\) divides the greatest common divisor.

4. Prove that if \(n\) is odd then \(n^2 \equiv 1 \pmod{8}\).
 \(n\) is either 1, 3, 5, or 7 mod 8, so we just have to check that \(1^2 \equiv 3^2 \equiv 5^2 \equiv 7^2 \equiv 1 \pmod{8}\).

5. What is \(11^{122} \mod 7\)?
 By Fermat’s Little Theorem, \(11^6 \equiv 1 \pmod{7}\). Thus \(11^{122} \equiv 11^6 \cdot 20 \cdot 11^2 \equiv 1 \cdot 2 \equiv 2 \pmod{7}\).

Cryptography

1. If we encrypt a number with the scheme \(p \mapsto p^{11} \pmod{35}\), then what is the decryption exponent?
 \(35 = 7 \cdot 5\), so we want to find the multiplicative inverse of 11 mod \((7 - 1)(5 - 1) = 24\). As it turns out 11 is its own inverse since \(11^2 = 121 \equiv 1 \pmod{24}\), so the decryption exponent is the same as the encryption exponent (not a very secure system!).

Induction

1. Given: if \(p\) is prime and \(p \mid ab\) then \(p \mid a\) or \(p \mid b\). Prove: if \(p\) is prime and \(p \mid a_1a_2 \cdots a_n\) then \(p \mid a_i\) for some \(i\).
 Proof by induction: The case \(n = 2\) is already given.
 Then suppose it holds for \(n\). If \(p \mid (a_1 \cdots a_n)a_{n+1}\) then either \(p \mid a_i \cdots a_n\) or \(p \mid a_{n+1}\). In the latter case, we are done. In the former, the inductive hypothesis implies that \(p \mid a_i\) for some \(i\) between 1 and \(n\). Either way, \(p \mid a_i\) for some \(i\) between 1 and \(n + 1\), so the proof by induction is complete.

2. Prove that consecutive Fibonacci numbers are relatively prime.
 Base case: \(f_0 = 0\) and \(f_1 = 1\) are relatively prime.
 Inductive step: Suppose \(\gcd(f_{n-1}, f_n) = 1\). Then \(\gcd(f_n, f_{n+1}) = \gcd(f_n, f_n + f_{n-1}) = \gcd(f_n, f_{n-1}) = 1\). This completes the proof by induction.

Counting

1. How many ways are there to buy 7 fruit if you have 10 choices of fruit?
 Stars and bars: there are 9 “bars” dividing the fruit and 7 stars, so the number of options is \(\binom{16}{7}\).

2. What if you want to buy at least one apple and exactly one pear?
 Buy an apple and a pear. Now you want to buy 5 fruit and have 9 types to choose from (removing the pears), so there are 5 stars and 8 bars, giving you \(\binom{13}{5}\) options.
Probability

1. What is the chance that a random permutation of the string “COMBINATORICS” will be “MANICROBOTICS”?

There are $13!/(2!)^3$ distinct ways to rearrange the letters, so the chance of making the desired string is $8/13!$.

2. Urn A has 3 red balls and 1 green ball. Urn B has 2 red balls and 3 green balls. You draw a ball from a random urn and win a prize if you correctly guess which urn you drew the ball from. Which color ball would you rather draw?

If you draw a red ball then the relative odds are $3/4 : 2/5 = 15 : 8$. If you draw a green ball then the relative odds are $1/4 : 3/5 = 5 : 12$. The odds in the second case are more lopsided, so drawing a green ball would give you the better chance of guessing correctly.

3. A loaded six-sided die rolls the number n with probability $n/21$ for $n = 1, 2, \ldots, 6$. If you roll such a die three times, what is the probability that the sum of the three rolls will be 6?

The two ways to roll a total of 6 are $1 + 1 + 4$ and $1 + 2 + 3$. Accounting for the number of ways to rearrange these rolls, the probability is then $3 \cdot (1/21)^2 \cdot (4/21) + 6 \cdot (1/21) \cdot (2/21) \cdot (3/21) = 48/21^3$.