Homework 9 Solutions

Math 55, DIS 101-102

7.1.32 [2 points]

100 people enter a contest with prizes for first, second, and thrid place. What is the probability that Kumar, Janice, and Pedro each win a prize?
The problem can be simplified by ignoring place and selecting only three winners. The probability is then $1 /\binom{100}{3}$, or about one in a million.
7.2.16 [0 points]

Show that if E and F are independent then \bar{E} and \bar{F} are also independent.

$$
\begin{aligned}
p(\bar{E} \cap \bar{F}) & =1-p(E \cup F) \\
& =1-p(E)-p(F)+p(E \cap F) \\
& =1-p(E)-p(F)+p(E) p(F) \\
& =(1-p(E))(1-p(F)) \\
& =p(\bar{E}) p(\bar{F}) .
\end{aligned}
$$

7.2.28 [2 points]

Probability of a boy is .51 , sexes of children are independent. What is the probability in a family of five of. . .

1. exactly three boys?

$$
\binom{5}{3}(.51)^{3}(.49)^{2} \approx .3185
$$

2. At least one boy?

$$
1-.49^{5} \approx .9718
$$

3. At least one girl?

$$
1-.51^{5} \approx .9655
$$

4. All children of the same sex?

$$
.49^{5}+.51^{5} \approx .06275
$$

7.3.4 [2 points]

The probability of selecting an orange ball from box 1 is $3 / 7$ and the probability of selecting an orange ball from box 2 is $5 / 11$. The probability of having selected box 2 given an orange ball is therefore

$$
\frac{(5 / 11)(1 / 2)}{(5 / 11)(1 / 2)+(3 / 7)(1 / 2)}=\frac{35}{68}
$$

The computation can be simplified using odds notation as well: $(5 / 11)(1 / 2):(3 / 7)(1 / 2)=5 / 11:$ $3 / 7=35: 33$, so the answer is $35 / 38$.

7.3.12 [2 points]

Probability of sending a 1 is $1 / 3$, with probability of being received correctly 0.8 . Probability of sending a zero is $2 / 3$, with probability of being received correctly 0.9 .

1. Find the probability that a 0 is received.

A recieved zero is either a correct zero or an incorrect 1 , so by the Sum Rule the probability is $(1 / 3)(0.2)+(2 / 3)(0.9)=2 / 3$.
2. Find the probability that a 0 was transmitted given that a 0 was received.

By Bayes' Theorem the probability is $(2 / 3)(0.9) /(2 / 3)=0.9$.

