Homework 8 Solutions

Math 55, DIS 101-102
6.3.12 [2 points]

How many bit strings of length 12 contain...

1. exactly three 1 s ?
$\binom{12}{3}=220$
2. at most three 1 s ?
$\binom{12}{0}+\binom{12}{1}+\binom{12}{2}+\binom{12}{3}=1+12+66+220=299$.
3. at least three 1s?

Take a shortcut by using the previous answer: $2^{12}-66-12-1=4017$.
4. an equal number of 0 s and 1 s ?
$\binom{12}{6}=924$
6.4.14 [2 points]

Show that each row of Pascal's Triangle is increasing until the middle and decreasing afterwards.
We can tell whether successive terms are increasing or decreasing by looking at the ratio $\binom{n}{k+1} /\binom{n}{k}$ and comparing this number to 1 . With that:

$$
\begin{aligned}
\binom{n}{k+1} /\binom{n}{k} & =\frac{n!}{(k+1)!(n-k-1)!} \frac{k!(n-k)!}{n!} \\
& =\frac{n!}{n!} \frac{k!}{(k+1)!} \frac{(n-k)!}{(n-k-1)!} \\
& =\frac{n-k}{k+1}
\end{aligned}
$$

This quantity is equal to 1 if and only if $k=\frac{n-1}{2}$, which implies that n is odd and $k=\lfloor n / 2\rfloor$. The terms will then be increasing for smaller k and decreasing for larger k. If n is even then no two terms in a row will be equal, but $k=n / 2$ will give the maximum value of $\binom{n}{k}$.
6.5.8 [2 points]

How many ways are there to choose a dozen donuts from the 21 varieties at a donut shop?
This is a stars-and-bars problem with 12 selections and 20 dividers between donuts, so the number of ways is $\binom{12+20}{20}=\binom{12+20}{12}=225792840$.
6.5.16 [2 points]

How many solutions are there to the equation $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=29$ with non-negative x_{i} such that. . .

1. $x_{i}>1$ for all i ?

This condition is equivalent to $x_{i} \geq 2$, so substituting in new variables $y_{i}=x_{i}+2, y_{i} \geq 0$ gives the new equation $\sum_{i} y_{i}=17$. This is then a stars-and-bars problem whose answer is $\binom{17 \overline{5} 5}{5}=26334$.
2. $x_{i} \geq i$ for all i?

Making the substitution $y_{i}=x_{i}+i$ (except for $\left.y_{5}=x_{5}+6\right)$ gives the new equation $\sum_{i} y_{i}=7$, so the number of solutions is $\binom{7+5}{5}=792$.
Note: many people misread this question because the problem had the inequality $x_{5}>5$ rather than $x_{5} \geq 5$. Because this mistake was so simple to make, both $\binom{12}{5}$ and $\binom{13}{5}$ were counted as correct answers.
3. $x_{1} \leq 5$?

This is the same as all of the solutions $\left(\binom{29+5}{5}\right)$ minus the ones where $x_{1} \geq 6\left(\binom{23+5}{5}\right)$, so the answer is $\binom{34}{5}-\binom{28}{5}=179976$.
4. $x_{1}<8$ and $x_{2}>8$?

Substitute $y_{2}=x_{2}+9$. Then the answer is all of the solutions $\left(\binom{20+5}{5}\right)$ minus the ones where $x_{1} \geq 8\left(\binom{12+5}{5}\right)$, which is 46942 .

