Homework 6 Solutions

Math 55, DIS 101-102
4.6.12 [2 points] Find all pairs (a, b) such that the map $p \mapsto a p+b \bmod 26$ is its own inverse.

We want to find (a, b) such that $a(a p+b)+b \equiv p(\bmod 26)$ for all $0 \leq p \leq 26$. If we set $p=0$ then this gives $a b+b=(a+1) b \equiv 0(\bmod 26)$. If we then set $p=1$, we get $a^{2} \equiv 1(\bmod 26)$.
The second congruence implies that $(a+1)(a-1) \equiv 0(\bmod 26)$, and the only solutions to this congruence are $a \equiv \pm 1(\bmod 26)$. In the case $a \equiv 1(\bmod 26)$ the congruence $(a+1) b \equiv 0(\bmod 26)$ has the solutions $b=0,13$, and in the case $a \equiv-1(\bmod 26)$ any value of b will do.
Thus: the only solutions are $(1,0)$ (which is the identity map), $(1,13)$ (which shifts every number by $13)$, and $(-1, b)$ for any b.
5.1.4 [2 points]

1. The statement $P(1)$ is that $1^{3}=\left(\frac{1 \cdot 2}{2}\right)^{2}$.
2. $\left(\frac{1 \cdot 2}{2}\right)^{2}=(1)^{2}=1=1^{3}$, so $P(1)$ is true.
3. The inductive hypothesis is that $\sum_{i=1}^{n} i^{3}=\left(\frac{i \cdot(i+1)}{2}\right)^{2}$.
4. For the inductive step, we need to prove that $\sum_{i=1}^{n+1} i^{3}=\left(\frac{(i+1) \cdot(i+2)}{2}\right)^{2}$.
5.

$$
\begin{aligned}
\sum_{i=1}^{n+1} i^{3} & =\sum_{i=1}^{n} i^{3}+(n+1)^{3} \\
& ={ }^{I H} \frac{n^{2} \cdot(n+1)^{2}}{4}+\frac{4(n+1)(n+1)^{2}}{4} \\
& =\frac{(n+1)^{2}\left(n^{2}+4 n+4\right)}{4} \\
& =\frac{(n+1)^{2}(n+2)^{2}}{4}
\end{aligned}
$$

6. We know that $P(1)$ is true and that $P(n) \rightarrow P(n+1)$ for any $n \in \mathbb{N}$, so the principle of induction implies that $P(n)$ is true for all natural numbers $n \geq 1$.
5.1.10 [2 points]
7. Define $S(n)=\sum_{i=1}^{n} \frac{1}{i(i+1)}$, and observe $S(1)=\frac{1}{2}, S(2)=\frac{2}{3}, S(3)=\frac{3}{4}$. Conjecture that $S(n)=$ $\frac{n}{n+1}$ for all $n \in \mathbb{N}$.
8. Base case: $S(1)=\frac{1}{2}$. Check!

Inductive step: Suppose that $S(n)=\frac{n}{n+1}$. Then

$$
\begin{aligned}
S(n+1) & =\sum_{i=1}^{n+1} \frac{1}{i(i+1)} \\
& =\sum_{i=1}^{n} \frac{1}{i(i+1)}+\frac{1}{(n+1)(n+2)} \\
& ={ }^{I H} \frac{n}{n+1}+\frac{1}{(n+1)(n+2)} \\
& =\frac{n(n+2)}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)} \\
& =\frac{n^{2}+2 n+1}{(n+1)(n+2)} \\
& =\frac{n+1}{n+2} .
\end{aligned}
$$

This completes the proof by induction.

5.2.14 [2 points]

Define $S(n)$ as the sum of all products resulting from splitting the piles of stones. If $n=1$ then there are no products, so the sum of all products is 0 . If $n=2$ then we can only split the pile into two piles of one stone each, so $S(2)=1 \cdot 1=1$. Also observe the recursive definition of the function $S(a+b)=S(a)+S(b)+a \cdot b$. Begin the proof by induction:
Base case: If $n=1$ then $S(n)=0=\frac{0 \cdot(0-1)}{2}$.
Inductive step: Suppose that $S(k)=\frac{k(k-1)}{2}$ for all $1 \leq k<n$. Then if we split the pile into two piles $n=a+b$, we must necessarily have $1 \leq a, b<n$, and so can apply the inductive hypothesis. Therefore:

$$
\begin{aligned}
S(n) & =S(a+b) \\
& =S(a)+S(b)+a \cdot b \\
& ={ }^{I H} \frac{a(a-1)}{2}+\frac{b(b-1)}{2}+\frac{2 a b}{2} \\
& =\frac{a(a-1)+a b+b(b-1)+a b}{2} \\
& =\frac{a(a+b-1)+b(a+b-1)}{2} \\
& =\frac{(a+b)(a+b-1)}{2} \\
& =\frac{n(n-1)}{2} .
\end{aligned}
$$

This completes the proof by induction.

