Homework 5 Solutions

Math 55, DIS 101-102
4.4.6 [2 points]

A number of people made arithmetic mistakes on this one. . . to minimize the chance of that happening, be sure to simplify your equations at every step so that you aren't dealing with too many terms.

1. $(\mathrm{a}=2, \mathrm{~m}=17)$

$$
17-2 \cdot 8=1
$$

Therefore, $(-8) \equiv 9$ is a multiplicative inverse of $2 \bmod 17$.
2. $(\mathrm{a}=34, \mathrm{~m}=89)$

$$
\begin{aligned}
89-2 \cdot 34 & =21 \\
34-21 & =13 \\
21-13 & =8 \\
13-8 & =5 \\
8-5 & =3 \\
5-3 & =2 \\
3-2 & =1 \\
3-(5-3) & =1 \\
2 \cdot 3-5 & =1 \\
2 \cdot(8-5)-5 & =1 \\
2 \cdot 8-3 \cdot 5 & =1 \\
2 \cdot 8-3 \cdot(13-8) & =1 \\
5 \cdot 8-3 \cdot 13 & =1 \\
5 \cdot(21-13)-3 \cdot 13 & =1 \\
5 \cdot 21-8 \cdot 13 & =1 \\
5 \cdot 21-8 \cdot(34-21) & =1 \\
13 \cdot 21-8 \cdot 34 & =1 \\
13 \cdot(89-2 \cdot 34)-8 \cdot 34 & =1 \\
13 \cdot 89-34 \cdot 34 & =1
\end{aligned}
$$

Therefore $(-34) \equiv 55$ is a multiplicative inverse of $34 \bmod 89$. This particular choice of a and m was rather annoying because Fibonacci numbers make the Euclidean algorithm take as long as it possibly can.
3. $(\mathrm{a}=144, \mathrm{~m}=233)$

More Fibonacci numbers...the gcd will be 1, and we'll use the previous problem to get to a
solution faster:

$$
\begin{aligned}
233-144 & =89 \\
144-89 & =55 \\
89-55 & =34 \\
13 \cdot 89-34 \cdot 34 & =1 \\
13 \cdot 89-34 \cdot(89-55) & =1 \\
-21 \cdot 89+34 \cdot 55 & =1 \\
-21 \cdot 89+34 \cdot(144-89) & =1 \\
34 \cdot 144-55 \cdot 89 & =1 \\
34 \cdot 144-55 \cdot(233-144) & =1 \\
89 \cdot 144-55 \cdot 233 & =1
\end{aligned}
$$

Therefore 89 is a multiplicative inverse of $144 \bmod 233$. Note that the answers in these last 2 problems were both Fibonacci numbers as well. . . there is a relationship here that we'll show on Monday using induction.
4. $(\mathrm{a}=200, \mathrm{~m}=1001)$

$$
1001-5 \cdot 200=1
$$

Therefore, $(-5) \equiv 996$ is a multiplicative inverse of $200 \bmod 1001$. Several people made the mistake of saying 5 was the multiplicative inverse, missing the minus sign.
4.4.7 [0 points]

Good answer: If $a b \equiv 1(\bmod m)$ and $a c \equiv 1(\bmod m)$ then $a b \equiv a c(\bmod m)$, so because $\operatorname{gcd}(a, m)=$ 1 we can conclude that $b \equiv c(\bmod m)$.
Slick answer: $c \equiv c \cdot 1 \equiv c(a b) \equiv(c a) b \equiv 1 \cdot b \equiv b(\bmod m)$.
4.4.8 [2 points]

Best answer: prove by contraposition, showing that if there exist x, y such that $a x+m y=1$ then $\operatorname{gcd}(a, m)=1$.
Proof: If $a x+m y=1$ then $\operatorname{gcd}(a, m) \leq \operatorname{gcd}(a x, m)=\operatorname{gcd}(a x+m y, m)=\operatorname{gcd}(1, m)=1$, $\operatorname{so} \operatorname{gcd}(a, m)=$ 1.

Also good: If $d \mid a$ and $d \mid m$ then $d \mid a x+m y$ for any x and y, so if $a x+m y=1$ then $\operatorname{gcd}(a, m) \mid 1$. Therefore $\operatorname{gcd}(a, m)=1$.
4.4.16 [2 points]

1. $2 \cdot 6 \equiv 3 \cdot 4 \equiv 5 \cdot 9 \equiv 7 \cdot 8 \equiv 1(\bmod 11)$.
$2.10!\equiv 1 \cdot(2 \cdot 6) \cdot(3 \cdot 4) \cdot(5 \cdot 9) \cdot(7 \cdot 8) \cdot 10 \equiv 1^{6} \cdot(-1) \equiv-1(\bmod 11)$.
4.4.33 [2 points]
$7^{121} \equiv\left(7^{12}\right)^{10} \cdot 7 \equiv 1^{10} \cdot 7 \equiv 7(\bmod 13)$.
4.4.50

The numbers 4 and 7 are small enough that you could do this by trial and error: for example $(3,5)$ is 5 $\bmod 7$, which gives the four options $5,12,19,26$. Of these four, only 19 is congruent to $3 \bmod 4$. Some people wrote out all 28 options, which is a little inefficient.

Here's a slicker way that gets at the spirit of the proof for the Chinese Remainder Theorem: observe that 21 corresponds to $(1,0)$ while 8 corresponds to $(0,1)$. This means that (a, b) corresponds to $21 a+8 b \bmod 28$. This method is more generalizable and easier to apply to larger cases.
Answers:

1. $(0,0) \mapsto 0$
2. $(1,0) \mapsto 21$
3. $(1,1) \mapsto 21+8=29 \equiv 1$
4. $(2,1) \mapsto 2 \cdot 21+8=50 \equiv 22$
5. $(2,2) \mapsto 2 \cdot(1,1)=2$
6. $(0,3) \mapsto 3 \cdot 8=24$
7. $(2,0) \mapsto 2 \cdot 21=42 \equiv 14$
8. $(3,5) \mapsto 3 \cdot 21+5 \cdot 8=103 \equiv 19$
9. $(3,6) \mapsto(3,5)+8=27$. (Also, $(3,6)=(-1,-1)=-(1,1)=-1 \equiv 27$.)
