
Homework 4 Solutions
Math 55, DIS 101-102

4.1.16 [2 points]

Prove that if a ≡ b (mod m) then a mod m = b mod m.

Simplest proof: If a ≡ b (mod m) then m|a− b, so a = b + mk for some k ∈ Z. Then if a = qm + r
with 0 ≤ r < m, it follows that b + km = qm + r and so b = (q − k)m + r. This implies that
a mod m = b mod m.

Second proof: Let a = sm + r1 and let b = tm + r2 with 0 ≤ r1, r2 < m. If a ≡ b (mod m) then
m|(a− b), so there exists k such that km = (sm+ r1)− (tm+ r2). So r1− r2 = (k + t− s)m, but since
0 ≤ r1, r2 < m the only possibility is r1 − r2 = 0, which means that r1 = r2 and a mod m = b mod m.

Many people here jumped directly from saying that r1−r2 = (k+ t−s)m to asserting that r1−r2 = 0.
The intuition is right, but note that it would take a few more lines to prove this step thoroughly. As an
example: r1 < m and r2 ≥ 0, so r1−r2 < m+0 = m. But r1 ≥ 0 and r2 < m, so r1−r2 > 0−m = −m.
The only number divisible by m that satisfies −m < x < m is 0, so r1 − r2 = 0.

Or a little less formal: We know that 0 ≤ r1, r2 ≤ m− 1, so if r1 6= r2 then their difference is at most
(m− 1)− 0 = m− 1. But no positive numbers less than m are divisible by m, so r1 − r2 must be 0.

4.1.37 [2 points] Find counterexamples to the following claims:

1. If ac ≡ bc (mod m) and m ≥ 2 then a ≡ b (mod m).

One way to look at this claim is to rewrite the first condition as (a − b)c ≡ 0 (mod m), and the
second as a− b ≡ 0 (mod m). This suggests c ≡ 0 (mod m) as the key to a counterexample, and
a = 1, b = 2, c = m = 3 suffices.

2. If a ≡ b (mod m) and c ≡ d (mod m) with c, d > 0 and m ≥ 2 then ac ≡ bd (mod m).

Since exponentiation for integers is just repeated multiplication, we can say that ac (mod m) =
(a mod m)c (mod m), and similarly for bd (mod m). It follows that if c = d then the claim is
true, so to find a counterexample we need to try c 6= d.

Pretty much any random choice will serve as a counterexample: If a = b = 2, c = 1, d = 6, and
m = 10, then 21 ≡ 2 (mod 10) but 26 ≡ 4 (mod 10).

4.2.4 [2 points]

1. Convert (1010110101)2 to decimal.

(1010110101)2 = 20 + 22 + 24 + 25 + 27 + 29 = 1 + 4 + 16 + 32 + 128 + 512 = 693.

2. Convert (111110000011111)2 to decimal.

Easy way: Notice that (111110000011111)2 = (11111)2 · (10000000001)2 = 31 · 1025 = 31775.

4.3.6 [0 points]

How many zeros are there at the end of 100!?

Since 10 = 2 · 5, the key is to look at the powers of 2 and 5 in 100!. Since the number of fives is
the limiting factor, we only need to count the number of fives. There are b100/5c = 20 numbers
contributing at least 1 power of five and b100/25c = 4 numbers contributing two powers (25, 50, 75,
100). 100! therefore ends in 24 zeros.

4.3.33 [2 points]

Use the Euclidean algorithm to find

1. gcd(1, 5): 1, since 1 is the largest divisor of 1.
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2. gcd(100, 101): 1, since consecutive numbers are relatively prime. (Also, 101 is prime.)

3. gcd(123, 277): 1

4. gcd(1529, 14039): 139

5. gcd(1529, 14038): 1, since 1529 and 14039 had a common factor and 14038 and 14039 are consec-
utive.

6. gcd(11111, 111111): 1
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