Homework 4 Solutions

Math 55, DIS 101-102

4.1.16 [2 points]

Prove that if $a \equiv b(\bmod m)$ then $a \bmod m=b \bmod m$.
Simplest proof: If $a \equiv b(\bmod m)$ then $m \mid a-b$, so $a=b+m k$ for some $k \in \mathbb{Z}$. Then if $a=q m+r$ with $0 \leq r<m$, it follows that $b+k m=q m+r$ and so $b=(q-k) m+r$. This implies that $a \bmod m=b \bmod m$.
Second proof: Let $a=s m+r_{1}$ and let $b=t m+r_{2}$ with $0 \leq r_{1}, r_{2}<m$. If $a \equiv b(\bmod m)$ then $m \mid(a-b)$, so there exists k such that $k m=\left(s m+r_{1}\right)-\left(t m+r_{2}\right)$. So $r_{1}-r_{2}=(k+t-s) m$, but since $0 \leq r_{1}, r_{2}<m$ the only possibility is $r_{1}-r_{2}=0$, which means that $r_{1}=r_{2}$ and $a \bmod m=b \bmod m$.
Many people here jumped directly from saying that $r_{1}-r_{2}=(k+t-s) m$ to asserting that $r_{1}-r_{2}=0$. The intuition is right, but note that it would take a few more lines to prove this step thoroughly. As an example: $r_{1}<m$ and $r_{2} \geq 0$, so $r_{1}-r_{2}<m+0=m$. But $r_{1} \geq 0$ and $r_{2}<m$, so $r_{1}-r_{2}>0-m=-m$. The only number divisible by m that satisfies $-m<x<m$ is 0 , so $r_{1}-r_{2}=0$.
Or a little less formal: We know that $0 \leq r_{1}, r_{2} \leq m-1$, so if $r_{1} \neq r_{2}$ then their difference is at most $(m-1)-0=m-1$. But no positive numbers less than m are divisible by m, so $r_{1}-r_{2}$ must be 0 .
4.1.37 [2 points] Find counterexamples to the following claims:

1. If $a c \equiv b c(\bmod m)$ and $m \geq 2$ then $a \equiv b(\bmod m)$.

One way to look at this claim is to rewrite the first condition as $(a-b) c \equiv 0(\bmod m)$, and the second as $a-b \equiv 0(\bmod m)$. This suggests $c \equiv 0(\bmod m)$ as the key to a counterexample, and $a=1, b=2, c=m=3$ suffices.
2. If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ with $c, d>0$ and $m \geq 2$ then $a^{c} \equiv b^{d}(\bmod m)$.

Since exponentiation for integers is just repeated multiplication, we can say that $a^{c}(\bmod m)=$ $(a \bmod m)^{c}(\bmod m)$, and similarly for $b^{d}(\bmod m)$. It follows that if $c=d$ then the claim is true, so to find a counterexample we need to try $c \neq d$.
Pretty much any random choice will serve as a counterexample: If $a=b=2, c=1, d=6$, and $m=10$, then $2^{1} \equiv 2(\bmod 10)$ but $2^{6} \equiv 4(\bmod 10)$.
4.2.4 [2 points]

1. Convert $(1010110101)_{2}$ to decimal.

$$
(1010110101)_{2}=2^{0}+2^{2}+2^{4}+2^{5}+2^{7}+2^{9}=1+4+16+32+128+512=693
$$

2. Convert $(111110000011111)_{2}$ to decimal.

Easy way: Notice that $(111110000011111)_{2}=(11111)_{2} \cdot(10000000001)_{2}=31 \cdot 1025=31775$.
4.3.6 [0 points]

How many zeros are there at the end of 100 !?
Since $10=2 \cdot 5$, the key is to look at the powers of 2 and 5 in $100!$. Since the number of fives is the limiting factor, we only need to count the number of fives. There are $\lfloor 100 / 5\rfloor=20$ numbers contributing at least 1 power of five and $\lfloor 100 / 25\rfloor=4$ numbers contributing two powers $(25,50,75$, 100). 100! therefore ends in 24 zeros.
4.3.33 [2 points]

Use the Euclidean algorithm to find

1. $\operatorname{gcd}(1,5): 1$, since 1 is the largest divisor of 1 .
2. $\operatorname{gcd}(100,101): 1$, since consecutive numbers are relatively prime. (Also, 101 is prime.)
3. $\operatorname{gcd}(123,277): 1$
4. $\operatorname{gcd}(1529,14039): 139$
5. $\operatorname{gcd}(1529,14038): 1$, since 1529 and 14039 had a common factor and 14038 and 14039 are consecutive.
6. $\operatorname{gcd}(11111,111111): 1$
