Homework 4 Solutions Math 55, DIS 101-102

4.1.16 [2 points]

Prove that if $a \equiv b \pmod{m}$ then $a \mod m = b \mod m$.

Simplest proof: If $a \equiv b \pmod{m}$ then m|a-b, so a = b + mk for some $k \in \mathbb{Z}$. Then if a = qm + r with $0 \leq r < m$, it follows that b + km = qm + r and so b = (q - k)m + r. This implies that $a \mod m = b \mod m$.

Second proof: Let $a = sm + r_1$ and let $b = tm + r_2$ with $0 \le r_1, r_2 < m$. If $a \equiv b \pmod{m}$ then m|(a-b), so there exists k such that $km = (sm + r_1) - (tm + r_2)$. So $r_1 - r_2 = (k + t - s)m$, but since $0 \le r_1, r_2 < m$ the only possibility is $r_1 - r_2 = 0$, which means that $r_1 = r_2$ and $a \mod m = b \mod m$.

Many people here jumped directly from saying that $r_1 - r_2 = (k + t - s)m$ to asserting that $r_1 - r_2 = 0$. The intuition is right, but note that it would take a few more lines to prove this step thoroughly. As an example: $r_1 < m$ and $r_2 \ge 0$, so $r_1 - r_2 < m + 0 = m$. But $r_1 \ge 0$ and $r_2 < m$, so $r_1 - r_2 > 0 - m = -m$. The only number divisible by m that satisfies -m < x < m is 0, so $r_1 - r_2 = 0$.

Or a little less formal: We know that $0 \le r_1, r_2 \le m-1$, so if $r_1 \ne r_2$ then their difference is at most (m-1) - 0 = m-1. But no positive numbers less than m are divisible by m, so $r_1 - r_2$ must be 0.

4.1.37 [2 points] Find counterexamples to the following claims:

1. If $ac \equiv bc \pmod{m}$ and $m \ge 2$ then $a \equiv b \pmod{m}$.

One way to look at this claim is to rewrite the first condition as $(a - b)c \equiv 0 \pmod{m}$, and the second as $a - b \equiv 0 \pmod{m}$. This suggests $c \equiv 0 \pmod{m}$ as the key to a counterexample, and a = 1, b = 2, c = m = 3 suffices.

2. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ with c, d > 0 and $m \ge 2$ then $a^c \equiv b^d \pmod{m}$.

Since exponentiation for integers is just repeated multiplication, we can say that $a^c \pmod{m} = (a \mod m)^c \pmod{m}$, and similarly for $b^d \pmod{m}$. It follows that if c = d then the claim is true, so to find a counterexample we need to try $c \neq d$.

Pretty much any random choice will serve as a counterexample: If a = b = 2, c = 1, d = 6, and m = 10, then $2^1 \equiv 2 \pmod{10}$ but $2^6 \equiv 4 \pmod{10}$.

$$4.2.4$$
 [2 points]

1. Convert $(1010110101)_2$ to decimal.

$$(1010110101)_2 = 2^0 + 2^2 + 2^4 + 2^5 + 2^7 + 2^9 = 1 + 4 + 16 + 32 + 128 + 512 = 693.$$

- 2. Convert $(111110000011111)_2$ to decimal. Easy way: Notice that $(111110000011111)_2 = (11111)_2 \cdot (10000000001)_2 = 31 \cdot 1025 = 31775$.
- 4.3.6 [0 points]

How many zeros are there at the end of 100!?

Since $10 = 2 \cdot 5$, the key is to look at the powers of 2 and 5 in 100!. Since the number of fives is the limiting factor, we only need to count the number of fives. There are $\lfloor 100/5 \rfloor = 20$ numbers contributing at least 1 power of five and $\lfloor 100/25 \rfloor = 4$ numbers contributing two powers (25, 50, 75, 100). 100! therefore ends in 24 zeros.

4.3.33 [2 points]

Use the Euclidean algorithm to find

1. gcd(1,5): 1, since 1 is the largest divisor of 1.

- 2. gcd(100, 101): 1, since consecutive numbers are relatively prime. (Also, 101 is prime.)
- 3. gcd(123, 277): 1
- 4. gcd(1529, 14039): 139
- 5. $\gcd(1529,14038)$: 1, since 1529 and 14039 had a common factor and 14038 and 14039 are consecutive.
- 6. gcd(11111, 111111): 1