
Homework 3 Solutions
Math 55, DIS 101-102

(2.2.20) [2 points] Suppose A and B are sets with A ⊆ B. Prove:

1. A ∪B = B.

Proof: If x ∈ B then x ∈ A or x ∈ B, so x ∈ A ∪B. Therefore B ⊂ A ∪B.

If x ∈ A ∪ B, then x ∈ A or x ∈ B. If x ∈ B then we are done. If x ∈ A then x ∈ B because
A ⊆ B. Either way, x ∈ B. Therefore, A ∪B ⊂ B.

Since B ⊂ A ∪B and A ∪B ⊂ B, we conclude that if A ⊂ B then A ∪B = B.

2. A ∩B = A.

Slick proof: We know from the previous problem that A ∪ B = B. So take complements and
use De Morgan’s Law to get A ∩ B = B. But A ⊂ B is equivalent to B ⊂ A, so this proves the
statement “If B ⊂ A then A∩B = B”. Renaming the sets appropriately gives the desired result.

Standard proof: If x ∈ A ∩B then x ∈ A and x ∈ B, so x ∈ A.

If x ∈ A then x ∈ B because A ⊆ B. So if x ∈ A then x ∈ A and x ∈ B, meaning x ∈ A ∩ B.
Therefore, A ⊂ A ∩B.

Since A ∩B ⊂ A and A ⊂ A ∩B, we conclude that if A ⊂ B then A ∩B = A.

The most common mistake here was to show only one direction (say, B ⊆ A ∪ B) and not the other
(A ∪B ⊆ B).

(2.3.12) [2 points] Determine whether each of these functions from Z to Z is one-to-one.

1. f(n) = n− 1 is one-to-one. Proof: If f(a) = f(b) then a− 1 = b− 1, so a− b.

2. f(n) = n2 + 1 is not one-to-one. Proof: f(−1) = 2 = f(1).

3. f(n) = n3 is one-to-one. A variety of proofs will work for this one:

(a) Since the derivative of the real-valued function g(x) = x3 is always non-negative and is only
zero at a single point, g(x) (and therefore f(x)) is an increasing function. Increasing functions
are one-to-one.

(b) For any n, (n + 1)3 − n3 = 3n2 + 3n + 1 = 3(n + 1/2)2 + 1/4 ≥ 1/4 > 0, so f(n) = n3 is an
increasing function. Increasing functions are one-to-one. Alternately, 3n2 + 3n + 1 is always
positive because the leading coefficient is positive and the equation 3n2 + 3n + 1 = 0 has no
real roots.

(c) Suppose a3 = b3. Then 0 = a3−b3 = (a−b)(a2+ab+b2), so either a = b or a2+ab+b2 = 0. If
the second case is true, then (supposing without loss of generality that |b| ≥ |a|) a2+ab+b2 ≥
a2 + b2 − |ab| ≥ a2 + b2 − b2 = a2 ≥ 0, so the two are equal only if a = 0 and b = 0.
Therefore, if a3 = b3 then a = b, so f is one-to-one.

4. f(n) = dn/2e is not one-to-one, since f(1) = 1 = f(2).

(2.3.44) [2 points]

1.

f−1(S ∪ T ) = [x ∈ A : f(x) ∈ S ∪ T ]

= [x ∈ A : f(x) ∈ S ∨ f(x) ∈ T ]

= [x ∈ A : f(x) ∈ S] ∪ [x ∈ A : f(x) ∈ T ]

= f−1(S) ∪ f−1(T )

Alternate proof, though the differences are only superficial:
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For any x ∈ A,

x ∈ f−1(S ∪ T )⇔ f(x) ∈ S ∪ T

⇔ f(x) ∈ S ∨ f(x) ∈ T

⇔ x ∈ f−1S ∨ x ∈ f−1T

⇔ x ∈ f−1(S) ∪ f−1(T ).

Similarly to the proof involving set equalities, many students here only showed inclusion in one
direction (e.g. f−1(S ∪ T ) ⊆ f−1(S) ∪ f−1(T )) and not the other, but asserted that this was
enough to show that the sets were equal. In the case of the proof immediately above, linking the
propositions with if-and-only-if statements (⇔) is enough to show that the sets are equal, but
having if-then statements (⇒) is not.

2.

f−1(S ∪ T ) = [x ∈ A : f(x) ∈ S ∩ T ]

= [x ∈ A : f(x) ∈ S ∧ f(x) ∈ T ]

= [x ∈ A : f(x) ∈ S] ∩ [x ∈ A : f(x) ∈ T ]

= f−1(S) ∩ f−1(T )

(2.4.14) [0 points]

1. an = 3: a0 = 3, an+1 = an.

2. an = 2n: a0 = 0, an+1 = an + 2.

3. an = 2n + 3: a0 = 3, an = 2 + an−1.

4. an = 5n: a0 = 1, an = 5 · an−1.

5. an = n2: a0 = 0, an+1 = an + 2n + 1.

6. an = n2 + n: a0 = 0, an = 2n + an−1.

7. an = n + (−1)n : a0 = 1, an+1 = an + 1− 2 · (−1)n.

8. an = n! : a0 = 1, an = n · an−1.

(2.5.10) [2 points]

1. Finite difference: A = [0, 1], B = [0, 1), A−B = {1}.
2. Countable difference: A = R, B = R−Q, A−B = Q.

3. Uncountable difference: A = [0, 1], B = [1, 2], A−B = [0, 1).

(2.5.30) [0 points]

The set of all triplets of integers (a, b, c) is equal to Z3, which is countable. Each triplet defines a
quadratic equation with at most 2 real solutions, so the set of real numbers that are solutions of such
equations is at most |2Z3| = |Z|, and is therefore countable.
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