Homework 3 Solutions

Math 55, DIS 101-102
(2.2.20) [2 points] Suppose A and B are sets with $A \subseteq B$. Prove:

1. $A \cup B=B$.

Proof: If $x \in B$ then $x \in A$ or $x \in B$, so $x \in A \cup B$. Therefore $B \subset A \cup B$.
If $x \in A \cup B$, then $x \in A$ or $x \in B$. If $x \in B$ then we are done. If $x \in A$ then $x \in B$ because $A \subseteq B$. Either way, $x \in B$. Therefore, $A \cup B \subset B$.
Since $B \subset A \cup B$ and $A \cup B \subset B$, we conclude that if $A \subset B$ then $A \cup B=B$.
2. $A \cap B=A$.

Slick proof: We know from the previous problem that $A \cup B=B$. So take complements and use De Morgan's Law to get $\bar{A} \cap \bar{B}=\bar{B}$. But $A \subset B$ is equivalent to $\bar{B} \subset \bar{A}$, so this proves the statement "If $\bar{B} \subset \bar{A}$ then $\bar{A} \cap \bar{B}=\bar{B}$ ". Renaming the sets appropriately gives the desired result. Standard proof: If $x \in A \cap B$ then $x \in A$ and $x \in B$, so $x \in A$.
If $x \in A$ then $x \in B$ because $A \subseteq B$. So if $x \in A$ then $x \in A$ and $x \in B$, meaning $x \in A \cap B$. Therefore, $A \subset A \cap B$.
Since $A \cap B \subset A$ and $A \subset A \cap B$, we conclude that if $A \subset B$ then $A \cap B=A$.
The most common mistake here was to show only one direction (say, $B \subseteq A \cup B$) and not the other $(A \cup B \subseteq B)$.
(2.3.12) [2 points] Determine whether each of these functions from \mathbb{Z} to \mathbb{Z} is one-to-one.

1. $f(n)=n-1$ is one-to-one. Proof: If $f(a)=f(b)$ then $a-1=b-1$, so $a-b$.
2. $f(n)=n^{2}+1$ is not one-to-one. Proof: $f(-1)=2=f(1)$.
3. $f(n)=n^{3}$ is one-to-one. A variety of proofs will work for this one:
(a) Since the derivative of the real-valued function $g(x)=x^{3}$ is always non-negative and is only zero at a single point, $g(x)$ (and therefore $f(x)$) is an increasing function. Increasing functions are one-to-one.
(b) For any $n,(n+1)^{3}-n^{3}=3 n^{2}+3 n+1=3(n+1 / 2)^{2}+1 / 4 \geq 1 / 4>0$, so $f(n)=n^{3}$ is an increasing function. Increasing functions are one-to-one. Alternately, $3 n^{2}+3 n+1$ is always positive because the leading coefficient is positive and the equation $3 n^{2}+3 n+1=0$ has no real roots.
(c) Suppose $a^{3}=b^{3}$. Then $0=a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$, so either $a=b$ or $a^{2}+a b+b^{2}=0$. If the second case is true, then (supposing without loss of generality that $|b| \geq|a|$) $a^{2}+a b+b^{2} \geq$ $a^{2}+b^{2}-|a b| \geq a^{2}+b^{2}-b^{2}=a^{2} \geq 0$, so the two are equal only if $a=0$ and $b=0$. Therefore, if $a^{3}=b^{3}$ then $a=b$, so f is one-to-one.
4. $f(n)=\lceil n / 2\rceil$ is not one-to-one, since $f(1)=1=f(2)$.
(2.3.44) [2 points]
5.

$$
\begin{aligned}
f^{-1}(S \cup T) & =[x \in A: f(x) \in S \cup T] \\
& =[x \in A: f(x) \in S \vee f(x) \in T] \\
& =[x \in A: f(x) \in S] \cup[x \in A: f(x) \in T] \\
& =f^{-1}(S) \cup f^{-1}(T)
\end{aligned}
$$

Alternate proof, though the differences are only superficial:

For any $x \in A$,

$$
\begin{aligned}
x \in f^{-1}(S \cup T) & \Leftrightarrow f(x) \in S \cup T \\
& \Leftrightarrow f(x) \in S \vee f(x) \in T \\
& \Leftrightarrow x \in f^{-1} S \vee x \in f^{-1} T \\
& \Leftrightarrow x \in f^{-1}(S) \cup f^{-1}(T) .
\end{aligned}
$$

Similarly to the proof involving set equalities, many students here only showed inclusion in one direction (e.g. $\left.f^{-1}(S \cup T) \subseteq f^{-1}(S) \cup f^{-1}(T)\right)$ and not the other, but asserted that this was enough to show that the sets were equal. In the case of the proof immediately above, linking the propositions with if-and-only-if statements (\Leftrightarrow) is enough to show that the sets are equal, but having if-then statements (\Rightarrow) is not.
2.

$$
\begin{aligned}
f^{-1}(S \cup T) & =[x \in A: f(x) \in S \cap T] \\
& =[x \in A: f(x) \in S \wedge f(x) \in T] \\
& =[x \in A: f(x) \in S] \cap[x \in A: f(x) \in T] \\
& =f^{-1}(S) \cap f^{-1}(T)
\end{aligned}
$$

(2.4.14) [0 points]

1. $a_{n}=3: a_{0}=3, a_{n+1}=a_{n}$.
2. $a_{n}=2 n: a_{0}=0, a_{n+1}=a_{n}+2$.
3. $a_{n}=2 n+3: a_{0}=3, a_{n}=2+a_{n-1}$.
4. $a_{n}=5^{n}: a_{0}=1, a_{n}=5 \cdot a_{n-1}$.
5. $a_{n}=n^{2}: a_{0}=0, a_{n+1}=a_{n}+2 n+1$.
6. $a_{n}=n^{2}+n: a_{0}=0, a_{n}=2 n+a_{n-1}$.
7. $a_{n}=n+(-1)^{n}: a_{0}=1, a_{n+1}=a_{n}+1-2 \cdot(-1)^{n}$.
8. $a_{n}=n!: a_{0}=1, a_{n}=n \cdot a_{n-1}$.
(2.5.10) [2 points]
9. Finite difference: $A=[0,1], B=[0,1), A-B=\{1\}$.
10. Countable difference: $A=\mathbb{R}, B=\mathbb{R}-\mathbb{Q}, A-B=\mathbb{Q}$.
11. Uncountable difference: $A=[0,1], B=[1,2], A-B=[0,1)$.
(2.5.30) [0 points]

The set of all triplets of integers (a, b, c) is equal to \mathbb{Z}^{3}, which is countable. Each triplet defines a quadratic equation with at most 2 real solutions, so the set of real numbers that are solutions of such equations is at most $\left|2 \mathbb{Z}^{3}\right|=|\mathbb{Z}|$, and is therefore countable.

