## Homework 14 Solutions

Math 55, DIS 101-102
10.5.3 [2 points]

An Euler circuit does not exist because the graph has 2 vertices of degree 3, but an Euler path does exist $(a-b-d-c-a-e-b-e-c-e-d)$.
10.5.10 [2 points]

An Euler circuit exists because the graph representing the town and bridges has only vertices of even degree.
10.7.6 [2 points]

If the graph is planar, draw it so that no edges cross:

10.7.18 [2 points]

If a planar graph has $k$ connected components, $e$ edges, and $v$ vertices, how many regions does it have? $r=e-v+k+1$. Each connected component would give $r_{c}=e_{c}-v_{c}+2$, so summing over all of them would give $r=e-v+2 k$. This overcounts the "outside" region by counting it $k$ times instead of 1 , so subtract $k-1$ to get $r=e-v+k+1$.

### 10.7.20 [2 points]

Deterimine whether the given graph is homeomorphic to $K_{3,3}$.
NOPE: $K_{3,3}$ has six vertices of degree 3 and the given graph has only 4. Furthermore, the given graph is planar and $K_{3,3}$ is not.

