Homework 13 Solutions
 Math 55, DIS 101-102

9.4.22 [2 points]

Show that if R is reflexive then R^{*} is reflexive.
$R^{*}=\bigcup_{i=1}^{\infty} R^{i}$, so in particular $R \subseteq R^{*}$. Since $\{(a, a): a \in A\} \subset R$, it follows that $\{(a, a): a \in A\} \subset R^{*}$ and therefore that R^{*} is reflexive.
9.5.2 [2 points]

Which of the following are equivalence relations?

1. a and b are the same age: YES
2. a and b have the same parents: YES
3. a and b share a common parent: NOT TRANSITIVE
4. a and b have met: NOT TRANSITIVE
5. a and b speak a common language: NOT TRANSITIVE
9.5.18 [2 points]
6. Let $f \sim g$ if $f^{\prime \prime \prime}=g^{\prime \prime \prime}$. Show that this is an equivalence relation. Let $D^{3}(f)=f^{\prime \prime \prime}$. Then $f \sim g$ if $D^{3}(f)=D^{3}(g)$, so \sim is an equivalence relation.
7. The equivalence class of x^{4} is the set of all functions of the form $x^{4}+b x^{2}+c x+d$. (Do not include the x^{3} term.)
10.2.24 [2 points]

Is the pictured graph bipartite?
Yes, since we can partition the vertices into the two sets $\{a, b, d, e\} \cup\{c, f\}$.
10.2.40 [2 points]

How many edges does a graph have if its degree sequence is $4,3,3,2,2$? Draw such a graph.
Such a graph has $(4+3+3+2+2) / 2=7$ edges. Here is such a graph:

