Homework 12 Solutions

Math 55, DIS 101-102
8.4.8 [2 points]

For each function, find a closed formula for the sequence it determines:

1. $\left(x^{2}+1\right)^{3}: a_{n}= \begin{cases}\binom{3}{n / 2} & 2 \mid n \\ 0 & 2 \nmid n\end{cases}$
2. $(3 x-1)^{3}: a_{n}=\binom{3}{n}(3)^{n}(-1)^{3-n}$
3. $1 /\left(1-2 x^{2}\right): a_{n}= \begin{cases}2^{n / 2} & 2 \mid n \\ 0 & 2 \nmid n\end{cases}$
4. $x^{2} /(1-x)^{3}: a_{n}=\binom{n}{2}$
8.6.9 [2 points] How many ways are there to give six different toys to three children so that each child gets at least one toy?
There are 3^{6} ways to give out the toys, minus $3 \cdot 2^{6}$ ways to give out the toys excluding at least one child, plus $3 \cdot 1^{6}$ ways to give out the toys excluding at least two children, minus 0 ways to exclude all three children, so 540 ways in all.
8.6.22 [2 points] Use inclusion-exclusion to find $\phi(p q)$.

There are $p q$ numbers between 1 and $p q$ minus p that are divisible by q minus q that are divisible by p, plus 1 for $p q$, so the answer is $p q-p-q+1=(p-1)(q-1)$.
9.1.10 [2 points] Give an example of a relation that is

1. both symmetric and antisymmetric: Let $A=\{1,2,3\}$. Then $R=\{(1,1)\}$ will do (or even $R=\emptyset!$).
2. Neither symmetric nor antisymmetric: Let $R=\{(1,2),(2,1),(2,3)\}$. It is not symmetric because $(2,3) \in R$ but $(3,2) \notin R$, and it is not antisymmetric because $(1,2),(2,1) \in R$ but $1 \neq 2$.
Remark: It seems that a lot of people were confusing "antisymmetric" with "not symmetric" for 10 b. It may help to think of the relations \geq or \subseteq : the only way we can have $a \leq b$ and $a \geq b$ is if $a=b$. Similarly, $A \subseteq B$ and $B \subseteq A$ implies that $A=B$.
