# Homework 11 Solutions <br> Math 55, DIS 101-102 

8.1.12 [2 points]

1. Find a recurrence relation for the number of ways to climb $n$ stairs if the person climbing the stairs can take 1,2 , or 3 steps at a time.

$$
S(n)=S(n-1)+S(n-2)+S(n-3)
$$

2. What are the initial conditions?

$$
S(-2)=S(-1)=0 ; S(0)=1
$$

3. How many ways can this person climb a flight of eight stairs?

| $n$ | $S(n)$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 1 |
| 2 | 2 |
| 3 | 4 |
| 4 | 7 |
| 5 | 13 |
| 6 | 24 |
| 7 | 44 |
| 8 | 81 |

8.1.20 [2 points]

A bus driver pays all tolls using only nickels and dimes.

1. Find a recurrence relation for the number of ways to pay a toll of $n$ cents where the order in which the coins are used matters.

$$
T(n)= \begin{cases}0 & n<0 \\ 1 & n=0 \\ T(n-5)+T(n-10) & n>0\end{cases}
$$

2. How many ways can the driver pay a toll of 45 cents?

| $n$ | $T(n)$ |
| :---: | :---: |
| 0 | 1 |
| 5 | 1 |
| 10 | 2 |
| 15 | 3 |
| 20 | 5 |
| 25 | 8 |
| 30 | 13 |
| 35 | 21 |
| 40 | 34 |
| 45 | 55 |

Note that this is just the Fibonacci sequence.
8.2.8 [2 points]

Assume that the number of lobsters caught per year is the average of the numbers caught in the previous two years.

1. Find a recurrence relation for $\left\{L_{n}\right\}$.
$L_{n}=L_{n-1} / 2+L_{n-2} / 2$.
2. Find $L_{n}$ if 100,000 lobsters were caught in year 1 and 300,000 were caught in year 2 .

The associated polynomial is $x^{2}-x / 2-1 / 2=0$ with roots $x=1,-1 / 2$, so the solution is of the form $a+b(-1 / 2)^{n}$. Taking the initial conditions into account gives

$$
\begin{aligned}
a-b / 2 & =100,000 \\
a+b / 4 & =300,000 \\
b & =800,000 / 3 \\
a & =700,000 / 3
\end{aligned}
$$

The solution is therefore $L_{n}=700,000 / 3+800,000 / 3(-1 / 2)^{n}$. This means that as $n \rightarrow \infty$, $L_{n} \rightarrow 700,000 / 3 \approx 233,000$.
8.2.24 [2 points] Consider the recurrence relation $a_{n}=2 a_{n-1}+2^{n}$.

1. Show that $a_{n}=n 2^{n}$ is a solution of the recurrence relation.

$$
2 a_{n-1}+2^{n}=2(n-1) 2^{n-1}+2^{n}=n 2^{n}=a_{n}
$$

2. Use Theorem 5 to find all solutions of this recurrence relation.

The general solution to the homogeneous equation is $a_{n}=c \dot{2}^{n}$, so all solutions are of the form $c \cdot 2^{n}+n 2^{n}$.
3. Find the solution with $a_{0}=2$.

Solving gives $c=2$, so the solution is $a_{n}=2 \cdot 2^{n}+n 2^{n}=(n+2) \cdot 2^{n}$.

