Homework 10 Solutions

Math 55, DIS 101-102
7.4.6 [2 points] What is the expected value when a $\$ 1$ lottery ticket is bought in which the purchaser wins $\$ 10$ million if the ticket contians the six winning numbers chosen from the set $\{1 \ldots 50\}$ and nothing otherwise?
The expected value is $\frac{10,000,000}{\binom{50}{6}}-1 \approx-.37$. You can expect to lose 37 cents whenever you buy a ticket.
7.4.10 [2 points] Suppose we flip a fair coin until it comes up tails twice or we have flipped it six times. What is the expected number of times we flip the coin?
For $2 \leq n \leq 5$, the number of ways to arrange the two tails so that the second one is on the final flip is $(n-1)$, so the probability of stopping after n flips for $n<6$ is $(n-1) / 2^{n}$. The sum of these probabilities is $13 / 16$, so there is a $3 / 16$ chance of stopping at $n=6$. The expected number of times we flip the coin is then

$$
2 \cdot \frac{1}{4}+3 \cdot \frac{2}{8}+4 \cdot \frac{3}{16}+5 \cdot \frac{4}{32}+6 \cdot \frac{3}{16}=15 / 4=3.75
$$

7.4.12 [2 points] Suppose we roll a fair die until a 6 comes up.

1. What is the probability that we roll the die n times?

We would have to roll $n-1$ numbers that are not 6 followed by a 6 , so the probability is $(5 / 6)^{n-1} \cdot(1 / 6)$.
2. What is the expected number of times we roll the die?

$$
E(N)=\sum_{n=1}^{\infty} n \cdot(5 / 6)^{n-1}(1 / 6)=(1 / 6)\left(\frac{1}{1-(5 / 6)}\right)^{2}=6
$$

This is a nice answer since after 6 rolls we would expect to have rolled exactly one 6 .
7.4.19 [2 points]

Let X be the number on the first die when two dice are rolled and Y be the sum of the two numbers. Show that $E(X) E(Y) \neq E(X Y)$.

$$
\begin{aligned}
E(X Y) & =\frac{1}{36} \sum_{n=1}^{6} \sum_{m=1}^{6} n(n+m) \\
& =\frac{1}{36} \sum_{n=1}^{6} 6 n^{2}+21 n \\
& =\frac{987}{36} \\
& =\frac{329}{12} \\
& >24.5 \\
& =\frac{7}{2} \cdot 7 \\
& =E(X) E(Y)
\end{aligned}
$$

The equation $E(X) E(Y) \neq E(X Y)$ does not necessarily hold because these two random variables are not independent.

Another solution: avoid doing arithmetic whenever possible and instead use linearity of expectations:

$$
\begin{aligned}
E(X Y) & =E(X(X+W)) \\
& =E\left(X^{2}\right)+E(X W) \\
& >E(X)^{2}+E(X W) \\
& =E(X)^{2}+E(X) E(W) \\
& =E(X) E(X+W) \\
& =E(X) E(Y)
\end{aligned}
$$

using the fact that $E\left(X^{2}\right)>E(X)^{2}$ because X has non-zero variance.
Another solution: define the covariance $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$ (see problems 7.4.44-46 in Rosen) and show that this number is not zero.

$$
\begin{aligned}
\operatorname{Cov}(X, X+W) & =\operatorname{Cov}(X, X)+\operatorname{Cov}(X, W) \\
& =\operatorname{Cov}(X, X) \\
& =\operatorname{Var}(X) \\
& >0
\end{aligned}
$$

since X (the roll of a single die) is not constant.

