Review

- 1. Evaluate each expression without using a calculator:
 - (a) $(-3)^4$ (c) 3^{-4} (e) $\left(\frac{2}{3}\right)^{-2}$ (b) -3^4 (d) $\frac{5^{23}}{5^{21}}$ (f) $16^{-3/4}$
- 2. Simplify each rational expression:

(a)
$$\frac{x^2 + 3x + 2}{x^2 - x - 2}$$

(b) $\frac{2x^2 - x - 1}{x^2 - 9} \cdot \frac{x + 3}{2x + 1}$
(c) $\frac{x^2}{x^2 - 4} - \frac{x + 1}{x + 2}$
(d) $\frac{\frac{y}{x} - \frac{x}{y}}{\frac{1}{y} - \frac{1}{x}}$

- 3. Solve each inequality. Write your answer using interval notation.
 - (a) $-4 < 5 3x \le 17$ (b) $x^2 < 2x + 8$ (c) x(x-1)(x+2) > 0(c) x(x-1)(x+2) > 0(c) $\frac{2x-3}{x+1} \le 1$ (c) x(x-1)(x+2) > 0(c) $\frac{2x-3}{x+1} \le 1$

4. Find an equation for the line that passes through the point (2, -5) and

- (a) has slope -3 (c) is parallel to the y-axis
- (b) is parallel to the x-axis (d) is parallel to the line 2x 4y = 3.
- 5. Find the center and radius of the circle with equation $x^2 + y^2 6x + 10y + 9 = 0$.
- 6. Let A(-7,4) and B(5,-12) be points in the plane.
 - (a) Find the slope of the line that contains A and B.
 - (b) Find and equation of the line that passes through A and B. What are the intercepts?
 - (c) Find the midpoint of the segment AB.
 - (d) Find the length of the segment AB.
 - (e) Find an equation of the perpendicular bisector of AB.
 - (f) Find an equation of the circle for which AB is a diameter.
- 7. Find the domain of the function.

(a)
$$f(x) = \frac{2x+1}{x^2+x-2}$$
 (b) $g(x) = \frac{\sqrt[3]{x}}{x^2+1}$ (c) $h(x) = \sqrt{4-x} + \sqrt{x^2-1}$

- 8. Without using a calculator, make a rough sketch of the graph.
 - (a) $y = x^3$ (b) $y = (x+1)^3$ (c) $y = (x-2)^3 + 3$ (d) $y = 4 - x^2$ (e) $y = \sqrt{x}$ (f) $y = 2\sqrt{x}$ (h) $y = 1 + x^{-1}$
- 9. If $\sin(x) = \frac{1}{3}$ and $\sec(y) = \frac{5}{4}$, where x and y lie between 0 and $\pi/2$, evaluate $\sin(x+y)$.
- 10. Prove the identities:
 - (a) $\tan(\theta)\sin(\theta) + \cos(\theta) = \sec(\theta)$ (b) $\frac{2\tan(x)}{1+\tan^2(x)} = \sin(2x)$