
Review Problems for Final: Answers
1. Graph f(x) = x2+4x+3

x−2 .

Graphs are attached after the rest of the solutions.

(a) Vertical asymptote at x = 2.

(b) Since x2 + 4x+ 3 = (x+ 3)(x+ 1), zeroes are at x = −1,−3.

(c) f(x) = x+ 6 + 15
x−2 , so the slant asymptote is x+ 6.

(d) f ′(x) = 1− 15/(x− 2)2 = 0 when x = 2±
√

15 ≈ −2, 2.

(e) f ′′(x) = 30/(x − 2)3, which is positive when x > 2 and negative when x < 2. Thus the critical
point at x = 2−

√
15 is a local max and the point at x = 2 +

√
15 is a local min. The function is

always concave down when x < 2 and concave up when x > 2.

2. Graph f(x) = 1
x +
√
x.

(a) Domain is x > 0, with a vertical asymptote at x = 0.

(b) f(x) is always positive, limx→∞ f(x) =∞.

(c) f ′(x) = −1/x2 + 1
2
√
x

= 0 when x = 3
√

4. Since this is the only critical point and limx→0 f(x) =

limx→∞ f(x) = ∞, we know that it must be a local minimum. Alternatively, show this by the
first derivative test or the (following) second derivative test.

(d) f ′′(x) = 2/x3 − 1
4x3/2 = 0 when x = 4. Plugging in a point or two will show that the graph is

concave up for x < 4 and concave down for x > 4.

(e) Additional note: as x→∞, 1/x→ 0, so the graph will look more and more like
√
x.

3. Graph f(x) =
√
x2 − 2.

(a) Domain: x2 − 2 ≥ 0, so x ≥
√

2 or x ≤ −
√

2.

(b) f(x) is always positive, and limx→±∞ f(x) =∞.

(c) f(x) is even, thus symmetrical about the y−axis.

(d) Check for a slant asymptote: limx→∞ f(x)/x = lim
√
x2 − 2/x = lim

√
1− 2/x2 = 1, so there is

a slant asymptote with slope 1.

(e) limx→∞ f(x) − mx = lim
√
x2 − 2 − x = lim(

√
x2 − 2 − x)(

√
x2 − 2 + x)/(

√
x2 − 2 + x) =

lim−2/(
√
x2 − 2 + x) = 0, so the slant asymptote as x→∞ is y = x.

(f) Since the function is even, the slant asymptote for x→ −∞ is y = −x.

(g) f ′(x) = x√
x2−2 , which is positive for x > 0 and negative for x < 0. Also, limx→±

√
2 f(x) = ±∞,

so the graph has vertical tangent lines at x = ±
√

2.

(h) f ′′(x) =
√
x2−2−x2/

√
x2−2

x2−2 = x2−2−x2

(x2−2)3/2 = −2
(x2−2)3/2 , which is always negative. Thus the graph is

always concave down.

4. Find a constant k such that limx→0
sin(x)+kx

x3 exists. Find the limit.

Both numerator and denominator have limit zero as x→ 0, so using L’Hospita’s Rule we get

lim
x→0

sin(x) + kx

x3
= lim

x→0

cos(x) + k

3x2

The denominator again has a limit of zero, so the limit of the whole function can exists ONLY if the
numerator also has a limit of zero (so that the whole limit is indeterminate). Thus k = −1. We can
now use L’Hospital’s rule two more times, which yields

lim
x→0

cos(x) + k

3x2
= lim

x→0

− sin(x)

6x
= −1/6
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5. Use Newton’s Method to fin the next two terms for

• x2 − x− 1 = 0, x0 = 1

Our iteration function is N(x) = x − f(x)/f ′(x) = x − x2−x−1
2x−1 . This gives x1 = N(x0) =

1− (−1/1) = 2 and x2 = N(x1) = 2− (1/3) = 5/3.

• ax− b = 0, x0 = c

Our iteration function is N(x) = x− f(x)/f ′(x) = x− (ax− b)/a = b/a, which is independent of
the starting point x. Therefore x1 = x2 = b/a, and so Newton’s method converges to the correct
solution in just one step.

6. A 10m wire is cut into two pieces, one bent to make a square and the other an equilateral triangle.
Maximize/minimize the combined area of the two shapes.

Let S be the length of wire used to make the square, so that (10−S) is the length used for the triangle.
The square has side lengths S/4, so has area S2/16. The triangle has side lengths (10−S)/3 and area
(10−S)2

√
3

36 =
√
3

36 (100− 20S + S2).

The derivative of the area with respect to S is therefore A′ = S(2 + 2
√

3/36)− 20
√

3/36, which is zero

when S = 10
√
3

36+
√
3
≈ .459. The second derivative is A′′ = 2 +

√
3/18, which is always positive, so this

point is the unique minimum.

Checking the endpoints shows that the total area is maximized when S = 10, so that all of the wire is
used toward making the square.

7. Maximize/minimize g(x) =
∫ cos(x)

sin(x)
t dt

By the First Fundamental Theorem of Calculus, g′(x) = cos(x)(− sin(x))−sin(x) cos(x) = −2 sin(x) cos(x) =
− sin(2x), which is zero when x = kπ/2. g′′(x) = −2 cos(2x), which is positive (g(x) is at a local min-
imum) when x = π/2 + kπ and negative (g(x) is at a local maximum) when x = kπ.

Alternatively, solve the integral and get g(x) = 1/2
t

2
|cos(x)sin(x) = 1

2 (cos(x)2− sin(x)2) = 1
2 cos(2x), and find

g′(x) from there.

8. Write the (Right hand) Riemann sums for the areas of triangles with the following vertices, and find
the corresponding integrals:

• (0, 0), (1, 0), (1, 1)

A =
∫ 1

0
x dx, so a = 0, b = 1.

∆x = (b− a)/n = 1/n

xi = a+ i∆x = i/n

Using right hand sums, the height of the i-th rectangle is f(xi) = i/n, so the Riemann sum is
limn→∞

∑n
i=1 f(xi)∆x = limn→∞

∑n
i=1(i/n)(1/n) = limn→∞

∑n
i=1 i/n

2.

• (1, 0), (2, 0), (2, 1)

A =
∫ 2

1
(x− 1) dx, so a = 1, b = 2, f(x) = x− 1.

∆x = (b− a)/n = 1/n

xi = a+ i∆x = 1 + i/n

Riemann sum is limn→∞
∑n

i=1 f(xi)∆x = limn→∞
∑n

i=1((1+i/n)−1)(1/n) = limn→∞
∑n

i=1 i/n
2,

same as the first sum.

• (0, 0), (1/2, 0), (1/2, 2)

A =
∫ 1/2

0
4x dx, so a = 0, b = 1/2, f(x) = 4x.

∆x = (b− a)/n = 1/2n.

xi = a+ i∆x = i/2n.
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Riemann sum is limn→∞
∑n

i=1 f(xi)∆x = limn→∞
∑n

i=1 4(i/2n)(1/2n) = limn→∞
∑n

i=1 i/n
2,

same as the first two sums.

The second integral relates to the first via the substitution u = x− 1, and the third relates to the
first by the substitution u = 2x.

9. Find the volume of the region bounded by y = 1− x2 and y = 0, rotated around. . .

• x = 1

The shape ranges in y-value from 0 to 1 and in x-value from -1 to 1.

Use cylindrical shells, integrating with respect to x. The height h is equal to |y1 − y2| = (1 −
x2) − 0 = 1 − x2, and the radius is equal to the distance of x from the axis of rotation, so
r = |1− x| = 1− x.

We then get V =
∫ 1

x=−1 2πrh dx = 2π
∫ 1

x=−1(1− x)(1− x2) dx = 8π/3.

• y = 1

Again integrate with respect to x, this time using washers. The outer radius is a constant R =
1− y2 = 1 and the inner radius is r = |1− y1| = 1− (1− x2) = x2.

The volume is then V =
∫ 1

x=−1 π(R2 − r2) dx
∫ 1

x=−1 π(12 − (x2)2) dx = π
∫ 1

x=−1 1− x4 = 8π/5.

10. Prove that ex and e−x intersect exactly once.

To prove that they intersect at least once:

(a) Observe that e0 = e−0 = 1.

(b) ex, e−x are both continuous. e−1 = 1/e < e = e−(−1), and e1 = e > 1/e = e−1, so by the
Intermediate Value Theorem they intersect somewhere in the interval [−1, 1].

(c) Let f(x) = ex− e−x. f(−1) < 0 < f(1), so by the IVT there is an x ∈ [−1, 1] such that f(x) = 0.

(d) Or observe that f is an odd function, thus f(0) = 0.

To show that they do not intersect again: d
dxe

x = ex > 0, so (as a corollary of the Mean Value

Theorem) ex is increasing. d
dxe
−x = −e−x < 0, so (again by the MVT) e−x is decreasing.

11. Find the volume of a pyramid with height 1 and a square base of side length 1.

This problem appears as an example in chapter 6 (6.2?) of the textbook; see the text for the solution.
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