Review Problems for Final: Answers

1. Graph $f(x)=\frac{x^{2}+4 x+3}{x-2}$.

Graphs are attached after the rest of the solutions.
(a) Vertical asymptote at $x=2$.
(b) Since $x^{2}+4 x+3=(x+3)(x+1)$, zeroes are at $x=-1,-3$.
(c) $f(x)=x+6+\frac{15}{x-2}$, so the slant asymptote is $x+6$.
(d) $f^{\prime}(x)=1-15 /(x-2)^{2}=0$ when $x=2 \pm \sqrt{15} \approx-2,2$.
(e) $f^{\prime \prime}(x)=30 /(x-2)^{3}$, which is positive when $x>2$ and negative when $x<2$. Thus the critical point at $x=2-\sqrt{15}$ is a local max and the point at $x=2+\sqrt{15}$ is a local min. The function is always concave down when $x<2$ and concave up when $x>2$.
2. Graph $f(x)=\frac{1}{x}+\sqrt{x}$.
(a) Domain is $x>0$, with a vertical asymptote at $x=0$.
(b) $f(x)$ is always positive, $\lim _{x \rightarrow \infty} f(x)=\infty$.
(c) $f^{\prime}(x)=-1 / x^{2}+\frac{1}{2 \sqrt{x}}=0$ when $x=\sqrt[3]{4}$. Since this is the only critical point and $\lim _{x \rightarrow 0} f(x)=$ $\lim _{x \rightarrow \infty} f(x)=\infty$, we know that it must be a local minimum. Alternatively, show this by the first derivative test or the (following) second derivative test.
(d) $f^{\prime \prime}(x)=2 / x^{3}-\frac{1}{4 x^{3 / 2}}=0$ when $x=4$. Plugging in a point or two will show that the graph is concave up for $x<4$ and concave down for $x>4$.
(e) Additional note: as $x \rightarrow \infty, 1 / x \rightarrow 0$, so the graph will look more and more like \sqrt{x}.
3. Graph $f(x)=\sqrt{x^{2}-2}$.
(a) Domain: $x^{2}-2 \geq 0$, so $x \geq \sqrt{2}$ or $x \leq-\sqrt{2}$.
(b) $f(x)$ is always positive, and $\lim _{x \rightarrow \pm \infty} f(x)=\infty$.
(c) $f(x)$ is even, thus symmetrical about the y-axis.
(d) Check for a slant asymptote: $\lim _{x \rightarrow \infty} f(x) / x=\lim \sqrt{x^{2}-2} / x=\lim \sqrt{1-2 / x^{2}}=1$, so there is a slant asymptote with slope 1 .
(e) $\lim _{x \rightarrow \infty} f(x)-m x=\lim \sqrt{x^{2}-2}-x=\lim \left(\sqrt{x^{2}-2}-x\right)\left(\sqrt{x^{2}-2}+x\right) /\left(\sqrt{x^{2}-2}+x\right)=$ $\lim -2 /\left(\sqrt{x^{2}-2}+x\right)=0$, so the slant asymptote as $x \rightarrow \infty$ is $y=x$.
(f) Since the function is even, the slant asymptote for $x \rightarrow-\infty$ is $y=-x$.
(g) $f^{\prime}(x)=\frac{x}{\sqrt{x^{2}-2}}$, which is positive for $x>0$ and negative for $x<0$. Also, $\lim _{x \rightarrow \pm \sqrt{2}} f(x)= \pm \infty$, so the graph has vertical tangent lines at $x= \pm \sqrt{2}$.
(h) $f^{\prime \prime}(x)=\frac{\sqrt{x^{2}-2}-x^{2} / \sqrt{x^{2}-2}}{x^{2}-2}=\frac{x^{2}-2-x^{2}}{\left(x^{2}-2\right)^{3 / 2}}=\frac{-2}{\left(x^{2}-2\right)^{3 / 2}}$, which is always negative. Thus the graph is always concave down.
4. Find a constant k such that $\lim _{x \rightarrow 0} \frac{\sin (x)+k x}{x^{3}}$ exists. Find the limit.

Both numerator and denominator have limit zero as $x \rightarrow 0$, so using L'Hospita's Rule we get

$$
\lim _{x \rightarrow 0} \frac{\sin (x)+k x}{x^{3}}=\lim _{x \rightarrow 0} \frac{\cos (x)+k}{3 x^{2}}
$$

The denominator again has a limit of zero, so the limit of the whole function can exists ONLY if the numerator also has a limit of zero (so that the whole limit is indeterminate). Thus $k=-1$. We can now use L'Hospital's rule two more times, which yields

$$
\lim _{x \rightarrow 0} \frac{\cos (x)+k}{3 x^{2}}=\lim _{x \rightarrow 0} \frac{-\sin (x)}{6 x}=-1 / 6
$$

5. Use Newton's Method to fin the next two terms for

- $x^{2}-x-1=0, x_{0}=1$

Our iteration function is $N(x)=x-f(x) / f^{\prime}(x)=x-\frac{x^{2}-x-1}{2 x-1}$. This gives $x_{1}=N\left(x_{0}\right)=$ $1-(-1 / 1)=2$ and $x_{2}=N\left(x_{1}\right)=2-(1 / 3)=5 / 3$.

- $a x-b=0, x_{0}=c$

Our iteration function is $N(x)=x-f(x) / f^{\prime}(x)=x-(a x-b) / a=b / a$, which is independent of the starting point x. Therefore $x_{1}=x_{2}=b / a$, and so Newton's method converges to the correct solution in just one step.
6. A 10 m wire is cut into two pieces, one bent to make a square and the other an equilateral triangle. Maximize/minimize the combined area of the two shapes.
Let S be the length of wire used to make the square, so that $(10-S)$ is the length used for the triangle. The square has side lengths $S / 4$, so has area $S^{2} / 16$. The triangle has side lengths $(10-S) / 3$ and area $\frac{(10-S)^{2} \sqrt{3}}{36}=\frac{\sqrt{3}}{36}\left(100-20 S+S^{2}\right)$.
The derivative of the area with respect to S is therefore $A^{\prime}=S(2+2 \sqrt{3} / 36)-20 \sqrt{3} / 36$, which is zero when $S=\frac{10 \sqrt{3}}{36+\sqrt{3}} \approx .459$. The second derivative is $A^{\prime \prime}=2+\sqrt{3} / 18$, which is always positive, so this point is the unique minimum.
Checking the endpoints shows that the total area is maximized when $S=10$, so that all of the wire is used toward making the square.
7. Maximize/minimize $g(x)=\int_{\sin (x)}^{\cos (x)} t d t$

By the First Fundamental Theorem of Calculus, $g^{\prime}(x)=\cos (x)(-\sin (x))-\sin (x) \cos (x)=-2 \sin (x) \cos (x)=$ $-\sin (2 x)$, which is zero when $x=k \pi / 2 \cdot g^{\prime \prime}(x)=-2 \cos (2 x)$, which is positive $(g(x)$ is at a local minimum) when $x=\pi / 2+k \pi$ and negative $(g(x)$ is at a local maximum) when $x=k \pi$.
Alternatively, solve the integral and get $g(x)=\left.\frac{1 / 2^{2}}{t}\right|_{\sin (x)} ^{\cos (x)}=\frac{1}{2}\left(\cos (x)^{2}-\sin (x)^{2}\right)=\frac{1}{2} \cos (2 x)$, and find $g^{\prime}(x)$ from there.
8. Write the (Right hand) Riemann sums for the areas of triangles with the following vertices, and find the corresponding integrals:

- $(0,0),(1,0),(1,1)$

$$
\begin{aligned}
& A=\int_{0}^{1} x d x, \text { so } a=0, b=1 . \\
& \Delta x=(b-a) / n=1 / n \\
& x_{i}=a+i \Delta x=i / n
\end{aligned}
$$

Using right hand sums, the height of the i-th rectangle is $f\left(x_{i}\right)=i / n$, so the Riemann sum is $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(i / n)(1 / n)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} i / n^{2}$.

- $(1,0),(2,0),(2,1)$
$A=\int_{1}^{2}(x-1) d x$, so $a=1, b=2, f(x)=x-1$.
$\Delta x=(b-a) / n=1 / n$
$x_{i}=a+i \Delta x=1+i / n$
Riemann sum is $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}((1+i / n)-1)(1 / n)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} i / n^{2}$, same as the first sum.
- $(0,0),(1 / 2,0),(1 / 2,2)$
$A=\int_{0}^{1 / 2} 4 x d x$, so $a=0, b=1 / 2, f(x)=4 x$.
$\Delta x=(b-a) / n=1 / 2 n$.
$x_{i}=a+i \Delta x=i / 2 n$.

Riemann sum is $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 4(i / 2 n)(1 / 2 n)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} i / n^{2}$, same as the first two sums.
The second integral relates to the first via the substitution $u=x-1$, and the third relates to the first by the substitution $u=2 x$.
9. Find the volume of the region bounded by $y=1-x^{2}$ and $y=0$, rotated around. .

- $x=1$

The shape ranges in y-value from 0 to 1 and in x -value from -1 to 1 .
Use cylindrical shells, integrating with respect to x. The height h is equal to $\left|y_{1}-y_{2}\right|=(1-$ $\left.x^{2}\right)-0=1-x^{2}$, and the radius is equal to the distance of x from the axis of rotation, so $r=|1-x|=1-x$.
We then get $V=\int_{x=-1}^{1} 2 \pi r h d x=2 \pi \int_{x=-1}^{1}(1-x)\left(1-x^{2}\right) d x=8 \pi / 3$.

- $y=1$

Again integrate with respect to x, this time using washers. The outer radius is a constant $R=$ $1-y_{2}=1$ and the inner radius is $r=\left|1-y_{1}\right|=1-\left(1-x^{2}\right)=x^{2}$.
The volume is then $V=\int_{x=-1}^{1} \pi\left(R^{2}-r^{2}\right) d x \int_{x=-1}^{1} \pi\left(1^{2}-\left(x^{2}\right)^{2}\right) d x=\pi \int_{x=-1}^{1} 1-x^{4}=8 \pi / 5$.
10. Prove that e^{x} and e^{-x} intersect exactly once.

To prove that they intersect at least once:
(a) Observe that $e^{0}=e^{-0}=1$.
(b) e^{x}, e^{-x} are both continuous. $e^{-1}=1 / e<e=e^{-(-1)}$, and $e^{1}=e>1 / e=e^{-1}$, so by the Intermediate Value Theorem they intersect somewhere in the interval $[-1,1]$.
(c) Let $f(x)=e^{x}-e^{-x} . f(-1)<0<f(1)$, so by the IVT there is an $x \in[-1,1]$ such that $f(x)=0$.
(d) Or observe that f is an odd function, thus $f(0)=0$.

To show that they do not intersect again: $\frac{d}{d x} e^{x}=e^{x}>0$, so (as a corollary of the Mean Value Theorem) e^{x} is increasing. $\frac{d}{d x} e^{-x}=-e^{-x}<0$, so (again by the MVT) e^{-x} is decreasing.
11. Find the volume of a pyramid with height 1 and a square base of side length 1.

This problem appears as an example in chapter 6 (6.2?) of the textbook; see the text for the solution.

