Mock Exam for Final

1. Graph $y=\frac{-2 x^{2}+x+1}{x+3}$.
(a) Vertical asymptote at $x=-3$.
(b) $-2 x^{2}+x+1=-(x-1)(2 x+1)$, so zeroes at $x=1,-1 / 2$.
(c) Long division gives $\frac{-2 x^{2}+x+1}{x+3}=-2 x+7-\frac{20}{x+3}$, so the slant asymptote is $y=-2 x+7$.
(d) $f^{\prime}(x)=-2+20 /(x+3)^{2}$, which is zero when $x=3 \pm \sqrt{10} \approx-6,0.1$.
(e) $f^{\prime \prime}(x)=-40 /(x+3)^{3}$, which is negative when $x>-3$ and positive when $x<-3$. Thus the graph is concave up when $x<-3$ and the point near $x=-6$ is a local minimum. The graph is concave down when $x>-3$ and the point near $x=0$ is a local maximum.
2. Rotate the area enclosed by $y=x^{2}$ and $y=\sqrt{x}$ around the line $x=-2$, and find the volume of the resulting solid.

Note that the enclosed area is bounded by two curves that intersect at $(0,0)$ and $(1,1)$.
Strategy 1: Shell method. Integrate along the x-axis. Formulae for radius and height given by $r=$ $|-2-x|=x+2, h=\left|x^{2}-\sqrt{x}\right|=\sqrt{x}-x^{2}$. Therefore

$$
\begin{aligned}
V & =2 \pi \int_{x=0}^{1} r h d x \\
& =2 \pi \int_{x=0}^{1}(x+2)\left(\sqrt{x}-x^{2}\right) d x \\
& =2 \pi \int_{x=0}^{1} 2 \sqrt{x}+x \sqrt{x}-2 x^{2}-x^{3} d x \\
& =\left.2 \pi\left(4 / 3 x^{3 / 2}+2 / 5 x^{5 / 2}-2 x^{3} / 3-x^{4} / 4\right)\right|_{0} ^{1} \\
& =49 \pi / 30
\end{aligned}
$$

Strategy 2: Washer method. Integrate along the y-axis. New functions given by $x=\sqrt{y}, x=y^{2}$. Outer radius is therefore $R=2+\sqrt{x}$, inner radius is $r=2+x^{2}$. Then get the integral

$$
\begin{aligned}
V & =\pi \int_{y=0}^{1}\left(R^{2}-r^{2}\right) d y \\
& =\pi \int_{y=0}^{1}(2+\sqrt{x})^{2}-\left(2+x^{2}\right)^{2} d y \\
& =49 \pi / 30
\end{aligned}
$$

3. Consider a table with a rectangular center and a semicircular cap at each end. The rectangle has length L and width 10 , and the two semicircular ends both have radius 5 (thus fit squarely on the side of length 10). What value of L will maximize the perimeter-to-area ratio (P / A) of the table?

The perimeter of the table is given by $P=2 L+10 \pi$, and the area is given by $A=10 L+25 \pi$. Therefore the ratio of the two is $P / A=\frac{2 L+10 \pi}{10 L+25 \pi}=\frac{1}{5} \frac{2 L+10 \pi}{2 L+5 \pi}=\frac{1}{5}\left(1+\frac{5 \pi}{2 L+5 \pi}\right)$.
The derivative is then $(P / A)^{\prime}=\frac{-2 \pi}{(2 L+5 \pi)^{2}}$, which is always negative. The only possible critical point is therefore at $L=0$, and since the function is decreasing (the derivative is always negative), $L=0$ is a global maximum.
4. Find $\lim _{x \rightarrow 0} \frac{\int_{\cos (x)}^{1} t \ln (t) d t}{x}$.

First note that $\lim _{x \rightarrow 0} \int_{\cos (x)}^{1} t \ln (t) d t=\int_{1}^{1} t \ln (t) d t=0$, so both numerator and denominator converge to zero and the limit is indeterminate. Use L'Hospital's rule to get

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\int_{\cos (x)}^{1} t \ln (t) d t}{x} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x} \int_{\cos (x)}^{1} t \ln (t) d t}{1} \\
& =\lim _{x \rightarrow 0}-\cos (x) \ln (\cos (x))(-\sin (x)) \\
& =(-1) *(0) *(0) \\
& =0
\end{aligned}
$$

5. Find $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sin (i \pi / n) \pi / n$.

Try to interpret as a (Right-hand) Riemann sum of the form $\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$, where $\Delta x=(b-a) / n$ and $x_{i}=a+i \Delta x$. The most reasonable guess is $\Delta x=\pi / n$, after which the simplest values to choose for a and b are $a=0 ; b=\pi$. (Any value for a is technically possible as long as $b=a+\pi$, but this choice is the simplest).
Then $f\left(x_{i}\right)=f(i \pi / n)=\sin (i \pi / n)$, so the most reasonable guess for f is $f(x)=\sin (x)$. We now have $f(x)=\sin (x), a=0, b=\pi$, so by the limit definition of the integral our sum is equal to $\int_{x=0}^{\pi} \sin (x) d x$. Using the Fundamental Theorem of Calculus to take the integral, we find that $\int_{x=0}^{\pi} \sin (x) d x=-\cos (\pi)-(-\cos (0))=2$.

