HW3: Due Tuesday, Sept. 9

Section 1.3

- 27) Questions on function composition.
 - a) How is the graph of y = f(|x|) related to the graph of f?
 - b) Sketch the graph of $y = \sin |x|$.
 - c) Sketch the graph of $y = \sqrt{|x|}$.
- 35) Find the functions a) $f \circ g$, b) $g \circ f$, c) $f \circ f$, and d) $g \circ g$ and their domains, where f(x) = x + 1/x, g(x) = (x+1)/(x+2).
- 37) Find $f \circ g \circ h$ where f(x) = 3x 2, $g(x) = \sin(x)$, and $h(x) = x^2$.
- 47) Express $R(x) = \sqrt{\sqrt{x-1}}$ in the form $f \circ g \circ h$.
- 51) Use the given graphs of f and g to evaluate each expression, or explain why it is undefined.

a)
$$f(g(2))$$
c) $(f \circ g)(0)$ e) $(g \circ g)(-2)$ b) $g(f(0))$ d) $(g \circ f)(6)$ f) $(f \circ f)(4)$

- 55) A ship is moving at a speed of 30 km/h parallel to a straight shoreline. The ship is 6 km from shore and it passes a lighthouse at noon.
 - a) Express the distance s between the lighthouse and the ship as a function of d, the distance the ship has traveled since noon; that is, find f so that s = f(d).
 - b) Express d as a function of t, the time elapsed since noon; that is, find g so that d = g(t).
 - c) Find $f \circ g$. What does this function represent?
- 60) If you invest x dollars at 4% interest compound annually, then the amount A(x) of the investment after one year is A(x) = 1.04x. Find $A \circ A$, $A \circ A \circ A$, and $A \circ A \circ A \circ A$. What do these compositions represent? Find a formula for the composition of n copies of A.
- 63) Suppose g is an even function and let $h = f \circ g$. Is h always an even function?

Section 1.5

- 3) Use the Law of Exponents to rewrite and simplify the following expressions:
 - a) $b^8 (2b)^4$ b) $(6y^3)^4/(2y^5)$
- 8) Graph the given functions on a common screen. How are these graphs related?
 - a) $y = e^{x}$ b) $y = e^{-x}$ c) $y = 8^{x}$
 - d) $y = 8^{-x}$
- 15) Make a rough sketch of the graph of the function $y = 1 \frac{1}{2}e^{-x}$. Do not use a calculator. Just use the graphs given in Figures 3 and 13 and, if necessary, the transformations of Section 1.3.
- 17) Starting with the graph of $y = e^x$, write the equation of the graph that results from
 - a) shifting 2 units downward
 - b) shifting 2 units to the right
 - c) reflecting about the x-axis
 - d) reflecting about the y-axis
 - e) reflecting about the x-axis and then about the y-axis