
Summary of Proofs for Exponents and Logs

We will take the following facts as given:

1. For n > 0 an integer, en = e · e · . . . · e, a product of n copies of e.

2. e0 = 1.

3. e > 1.

4. ex+y = ex · ey for all x and y.

5. e−x = 1/ex for all x.

6. (ex)y = exy for all x and y.

7. For a and b integers with b > 0, ea/b = b
√
ea.

8. For n > 0 an integer, n
√
x is an increasing function.

1 Exponential Functions

1.1 ex is an Increasing Function

Our first goal is to show that ex is an increasing function. We cannot do this all at once, and so must
break the proof into several steps. First, we will show that the claim holds for positive integers, then for all
integers, then for all rational numbers.

1. For m and n integers with m > n ≥ 0, we have em > en.

Proof: Since m > n, em is a product involving more copies of e than en. Since e > 1, multiplying
more copies of e gives us a bigger number. Therefore em > en.

2. For m and n integers with m > n, we have em > en.

Proof: We know that this works for non-negative numbers, so subtract n from both sides in order to
make both sides non-negative (this may be slightly non-intuitive, but allows us to prove the two cases
0 > m > n and m > 0 > n at the same time).

m > n

m− n > 0

em−n > e0

em/en > 1

em > en
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3. For a/b > c/d, with b, d > 0, we have ea/b > ec/d.

Proof: We know that em > en if m > n and m, n are integers, so clear the denominators in order
to get an inequality involving integers. Once we have this, we can take roots to get back to fractional
exponents.

a/b > c/d

ad > bc

ead > ebc

(ead)1/bd > (ebc)1/bd

ea/b > ec/d

Note that the second-to-last step uses the fact that bd
√
x is an increasing function.

Therefore ex is increasing on the rational numbers. We have not yet defined er for irrational numbers r, but
we now define er so that ex is increasing on the real numbers. As the textbook mentions, this would imply
that

e3.1 < e3.14 < . . . < eπ < . . . < e3.142 < e3.15

This gives us our first important result:

Theorem 1.1 ex is an increasing function.

1.2 Other Results for ex

Later in the course, we will get a much more powerful tool for proving that certain functions are increasing:

Theorem 1.2 If f is differentiable and f ′(x) > 0 for all x, then f is increasing.

But for now we move on to another important theorem, which will allow us to say more about our function
ex:

Theorem 1.3 If f is increasing, then f is 1-1.

Proof: Let x 6= y, so either x > y or x < y.
If x > y, then f(x) > f(y), so f(x) 6= f(y).
If x < y, then f(x) < f(y), so again we get f(x) 6= f(y). Therefore x 6= y ⇒ f(x) 6= f(y), and so f is 1-1.

Side note: Since the names for x and y were arbitrary, we did not actually need to prove the cases x > y
and x < y separately. It would have been okay to say “without loss of generality (WLOG), let x > y.” We
can also prove a similar result for decreasing functions (where x > y ⇒ f(x) < f(y)):

Corollary 1.3.1 If f is decreasing, then f is 1-1.

Next, we can put two of our theorems together to conclude something new about ex:

Corollary 1.3.2 ex is 1-1.

Proof: ex is increasing, and increasing functions are 1-1.
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1.3 Other Bases

There is no particular reason that these results should work for ex only, so what happens when we look at
ax for other values of a? If a < 0, then ax does not behave nicely as a real-valued function, so we will ignore
it. If a = 1, then ax = 1 for all x. But if a > 0 and a 6= 1, then we can prove similar results about ax by
using the same methods as we did for ex.

If a > 1 then by simply substituting a for e everywhere, we get the following:

Theorem 1.4 If a > 1, then ax is an increasing function.

If a < 1, then an will get smaller rather than larger as n increases. By reversing the inequalities in the proof
for ex, we get:

Theorem 1.5 If 0 < a < 1, then ax is a decreasing function.

Either way, we can apply our theorems about increasing and decreasing functions being 1-1 and conclude
that

Corollary 1.5.1 For a > 0, a 6= 1, ax is 1-1. Each such function therefore has an inverse function, which
we will call loga (or ln, in the case a = e).

2 Logarithmic Functions

The key idea that Ole wished to drive across is that the rules for evaluating logarithms do not exist in a
vacuum, but are immediate consequences of the fact that logarithmic functions are inverses of exponential
functions. With this in mind, we will set out to prove the log laws based on what we now know about
exponentials.

2.1 Basic Relations

Since the range of ax is (0,∞) for any base a > 0, a 6= 1, the domain of loga is also (0,∞). By definition,
loga(ax) = x for all x. Also by definition, aloga(x) = x for all x > 0.

For the purpose of proofs, it will sometimes be easier to say loga(x) = c⇔ ac = x. We start by proving one
method for converting between bases:

Theorem 2.1 ax = bx logb(a)

Proof: ax = (blogb a)x = bx logb a.

In particular, if we want to make e our default base this implies that ax = ex ln(a). This can be handy
for computations because calculators tend to have e and 10 as their default bases for taking exponents and
logarithms.

2.2 The Log Laws

For several of the folowing proofs we will make temporary substitutions by setting loga(x) to some constant
c, then saying ac = x. This is not strictly necessary for the proof, but will hopefully make the notation easier
to follow.

Theorem 2.2 loga(1) = 0; loga(a) = 1

Proof: a0 = 1; a1 = a.
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Theorem 2.3 loga(xy) = loga(x) + loga(y)

Proof: Set b = loga(xy), c = loga(x), d = loga(y), so that we have ab = xy, ac = x, ad = y. We then get

ab = xy

ab = acad

ab = ac+d

b = c + d

loga(xy) = loga(x) + loga(y)

Theorem 2.4 loga(x/y) = loga(x)− loga(y)

Proof: Set b = loga(x/y), c = loga(x), d = loga(y), so that ab = x/y, ac = x, ad = y. We then get

ab = x/y

ab = ac/ad

ab = ac−d

b = c− d

loga(x/y) = loga(x)− loga(y)

Theorem 2.5 loga(xr) = r loga(x)

Proof:
Set b = loga(xr), c = loga(x), so that ab = xr, ac = x. We then get

ab = xr

ab = (ac)r

b = rc

loga(xr) = r loga(x)

This final result gives us a method for converting between bases:

Theorem 2.6 For any bases a and b, we have loga(x) = logb(x)/ logb(a)

Proof: Let c = loga(x), so that ac = x. We then get

ac = x

logb(a
c) = logb(x)

c logb(a) = logb(x)

c = logb(x)/ logb(a)

loga(x) = logb(x)/ logb(a)

If we take b = e in particular, this gives us loga(x) = ln(x)/ ln(a).
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